PROGRAMMING 101

Creative Coding HS21

PROGRAM

A set of instructions 1s called a program,
whose task 1s to tell the computer what to

do or tell other people what we want the
computer to do.

COMPUTER LANGUAGE

Data and 1nstructions (numbers, characters,
strings, etc.) are encoded as binary numbers
- a series of bits (1s or Os). Encoding and
decoding of data 1into binary 1s performed
automatically by the system based on the
encoding scheme. The digits 1 and 0O used 1in
binary reflect the on and off states of a
transistors that a computer processor (CPU)
1s made of.

COMPUTER LANGUAGE

Numeric Data 1s encoded as bilnary numbers.

1 O 1 0 1
‘ V 1x2°=1
I 0x2'=0
1 x2°=4
1 x2° =
0 x 2% =
1 x2°=32

SUM—= 45

COMPUTER LANGUAGE

Non-Numeric Data 1s encoded as binary
numbers wusing representative code, eilther
ASCII - 1 byte per character or Unicode - 2
bytes per character.

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 6l a
2 2 [START OF TEXT] 34 22 ' 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 C
4 4 [END OF TRANSMISSION] 36 24) 68 44 D 100 64 d
5 g [ENQUIRY] 37 25 % 69 45 £ 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
3 8 [BACKSPACE] 40 28 (72 48 H 104 638 h
9 9 [HORIZONTAL TAB) 41 29) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 4A)| 106 6A j
11 B [VERTICAL TAB] 43 2B + /5 4B K 107 6B k
12 C [FORM FEED/ 44 2C] 76 aC L 108 6C |
13 D [CARRIAGE RETURN) 45 2D - 77 aD M 109 6D m
14 E [SHIFT OUT] 46 2E - 78 4k N 110 3]= n
15 F [SHIFT IN] 47 2F / 79 4F O 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 11 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 5! 33 3 83 53 S 115 73 S
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLEJ 54 36 6 86 56 V 118 76 v
23 17 [ENG OF TRANS. BLOCK) 55 37 7 87 57 wW 119 77 wW
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END QF MEDIUM] 57 39 9 89 59 Y 121 79 Y
26 1A [SUBSTITUTE] 58 3A : 90 5A Z 122 TA Z
27 1B [ESCAPE] 59 3B ; 91 5B | 123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D — 93 5D] 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 SE - 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

COMPUTER LANGUAGE

A group of 8 bits 1s called a byte. Most
computers can process millions of bits

every second.

Data
One extended-ASCIl character in a text file (eg 'A’)
The word 'Monday' in a document
A plain-text email
64 pixel x 64 pixel GIF
Hi-res 2000 x 2000 pixel RAW photo
Three minute MP3 audio file
One minute uncompressed WAV audio file

One hour film compressed as MPEG4

Storage
1 byte
6 bytes
2 KB
12 KB
11.4 MB
3 MB
15 MB
4 GB

COMPUTER LANGUAGE

Computers can not wuse human languages,
and programming in the binary language of
computers 1s a very difficult, tedious
process. Therefore, most programs are
written using a programming language and
are converted to the binary language used
by the computer.

COMPUTER LANGUAGE

There are three major categories
of programming languages:

1.Machine Language
2.Assembly Language
3.High level Language

ASSEMBLY LANGUAGE

English-1i1ke abbreviations are used for operations

global _start
section .text
_Sstart: mov 1
mov 1
mov message
mov 13

Was developed to make programming easier.

Assembler 1s used to convert assembly language
programs 1nto machine code

High Level Languages

English-1ike and easy to learn and program
Common mathematical notation

e.x Java, C, C++, Visual Basic

High Level Languages

A program written 1n a high-level language 1s
called a source program (or source code). Since
a computer cannot understand a source program.
Program called a compiler 1s used to translate
the source program into a machine language
program called an object program. The object
program 1s often then linked with other
supporting library code before the object can
be executed on the machine.

High Level Languages

The majority of the most popular programming
languages are what’'s known as object-oriented.
Essentially, this 1s a model of programming
that's organised around data (also called
objects). OOP languages are easy to manipulate,
reuse, and scale, making them 1deal for
structuring software.

Object Oriented Programming

Class

Specifies the definition
of a particular kind ot
object

Characteristics:
Properties (or Attributes)

Behaviozrs:
Methods used as a template
to create objects of that

type

Object/Instance

An object created using
the Class Definition

All specific instances of
the same class share the
same definition

Class Cats 3
constructor() 3
name
breed
age
welght

meow ()
sleep()
eat()
hunt ()

Object Oriented Programming

myCat = new Cat() %

name = Lucy
breed = Persian
age = 3 years
welight = 5.2kg

meow ()
sleep()
eat ()

Class Cats 3
constructor() 3
name
breed
age
welght

meow ()
sleep()
eat()
hunt ()

Object Oriented Programming

myCat = new Cat() %

name = Lucy
breed = Persian
age = 3 years
welight = 5.2kg

meow ()
sleep()
eat ()

§

myCat.meow() ;
myCat.sleep();

Ci# 1s a programming language designed by Microsotft.
It was designed to 1mprove upon existing concepts 1n
C (procedural computer programming language).

Microsoft .NET framework
Web apps & mobile apps
eGames (Unity)

Java was developed 1n 1995 and gained popularity
very fast because once you write a piece of code
1n Java, 1t can run on just about any device with
the Java platform.

Business software
Web applications
Mobile apps (Android)

PYTHON

Python 1s a high-level programming language
launched 1n 1992. It’'s built 1n such a way that
1t’'s relatively i1ntuitive to write and understand,
making 1t 1deal for those who want rapid
development.

Web applications
Artificial i1ntelligence and machine learning
«Visual programming (plugins)

Ruby was conceived 1n 1993 as a general-purpose
OOP. It became popular once Ruby on Raills was

released (a web application framework written 1n
Ruby)

Web-applications
-Data analysis
Prototyping

JAVASCRIPT

JavaScript was developed 1n 1995 as a language
that runs 1nside a client browser and processes
commands on a computer rather than a server. It 1s
commonly placed into an HTML or ASP file.

Web and mobile applications
Interactive applications
*VVisual Coding

WHY JAVASCRIPT?

JavaScnpt 67.8%
HIMUCSS 63.5%
SQL 54.4%
Python 41.7%
Java 41.1%
Bash/Shell/PowerShell 36.6%
C# 31.0%
PHP 26.4%
C++ 23.5%
TypeScript 21.2%
C 20.6%

Ruby 8.4%

Go 8.2%

FIGURE 1 Open in figure viewer | #PowerPoint

Most popular programming languages on Stack Overflow, 2019

What's the
difference between
JavaScript and

https://github.com/sorrycc/awesome-javascript

https://github.com/sorrycc/awesome-javascript

Web editor

Openprocessing

Processing IDE

Code Editor (VSCode, Atom,

Brackets etc.)

SYNTAX

JavaScript 1s case-sensitive. You can start a variable with be a letter (a-z, or
A-Z), an underscore(_), or a dollar sign ($). It is a good practice to use camel
case for the 1dentifiers, meaning that the first letter 1s lowercase, and each
additional word starts with a capital letter.

var clickCounter
var redirectPagel23
var amountInArray$

SYNTAX

JavaScript provides different datatype to hold different values on variable.
JavaScript 1s a dynamic programming language, 1t means do not need to specify the
type of variable.

// It store string data type
var txt = “Creative Coding";

// It store integer data type
var a = b;
var b = 5;

// It store Boolean data type
(a == b)

// It store array data type
var places= ["GFG", "Computer", "Hello"];

// It store object data
var Student = {firstName:"John", lastName:"Doe", age:19, skill:"prototyping"t}

SYNTAX

JavaScript supports both single-line and block comments.

// this 1s a single-line comment

/*
* This 1s a block comment that can
* span multiple Llines

*/

SYNTAX

JavaScript does not require to end a statement with a semicolon (;), but 1t 1s
recommended to always use the semicolon to end a statement.

var clickCounter;
var redirectPagel23;
var amountInArray$;

SYNTAX

You can use arithmetic operation with any type of data.

let numberl
let number2

2
= 3
let value = 5;

3;

Addition: numberl + number2
Subtraction: number2 - number2
Multiplication: numberl* number?2
Division: number2 / numberl
Remaindexr: numberl % number2
Incxrement: ++value, value++
Decrement: --value, value-—
Negate: -value //

Convert to number: +value.

SYNTAX

Function 1s block of code designed to perform a particular task and 1t's a core
of JavaScript language. You call a function

function makeCoffe() 3
var nextCoffee = new Coffee();
nextCoffee.brew(frenchPress, arabica);

h

function brew(brewType, beanType) 1
coffee = brewType + beanType
return coffee;

SYNTAX

The console.log() method outputs a message to the web console. The message may be
a single string (with optional substitution values), or 1t may be any one or more
JavaScript objects.

console.log('Hello, world!");

console.error('Something went wrong!"');

Programming

The core part of learning to program 1s learning
how to think about arranging the sequence of
instructions to solve the problem or carry out the
task.

Polya’'s 4 Steps of Problem Solving

Undexstand the Problem
Do I completely understand what 1s being asked ?
What are the requirements, what 1s expected ?

Devise a Good Plan to Solve the Problem
Develop your Algorithm - AT LEAST ONE

Implement the Plan
Follow through with your algorithm

Evaluate the Implementation
Did 1t work?
Did 1t solve the problem correctly and completely?
Is there another way to solve the problem?

George Polya - 1950's

