Auditory Displays

What is an Auditory Display?

"The use of non-linguistic sound to represent information of all kinds" ("Sonification Report")

Special strengths:

- Providing information when visual attention is elsewhere
- Focusing the user attention
- Navigation, orientation (eg in menus)
- Relieving cognition through multimodality,
- Increasing efficiency through redundancy
- Non-verbal sounds can work universally like icons (eg sound symbols in movies!)

Alerts, Notifications, Alarms

- Examples?
- Sound shows that something happened or will happen
- Little information included: "It burns", but not "850 degrees, 3rd floor" etc.
- Notification, Alarm,
- Statusinformation
- <u>Processinformation</u>
- Often not enough to cope with the increasing complexity of applications. Follow-up concepts are
 "Auditory Icons" and "Earcons"

Auditory Icons

- Icon = Abstract representation of a "real" object, refers to this by "similarity"
- Use of "everyday sounds"
- Based on auditory experiences
- Metaphorical, reference
- Examples
 - <u>Camera</u>
 - <u>Trashbin</u>
- Advantage: recognizability, association
- Physical Models (see paper jam)

Earcons

- Earcons: abstract, tonal, often synthetic sound events, "musical" (1, 2, 3)
- Guidelines the creation: (siehe auch http://www.dcs.gla.ac.uk/"stephen/earcon_guidelines.shtml)
 - Tone: multiple harmonies, different instruments
 - Pitch: unsuitable for absolute determination as the only parameter. Helps in identifying when complex and even combined with rhythm.
 - Rhythms are most effective when the number of notes differs.
 - If rhythms are too similar, even different tones can not be optimally distinguished.
 - Duration must be matched to interaction sequence
 - Volume usually unsuitable for differentiation, except for foreground / background. Limit dyna

Ex1: Systematics

- Comprehensive and flexible infrastructure for employing sounds
- Ensuring minimal consistency with styleguide
- Skins and sound schemes ensure minimal consistency and quality while providing customizability
- Examples
 - Logon
 - Battery critical
 - General notification
 - Print complete

Ex2: Systematics, Branding

- All functional sounds are complex and detailed and share common design quality.
- Every sound is a "brand" sound
 - "Whilst composing these sounds the most important thing was to create a strong character and personality for the evolving brand and medium."

(http://www.soundtree.co.uk)

- Examples:
 - Sign in

- Incoming message

- Ringtone

- File send error

Ex3: Emotionalisation, Welcome

- Sounds and animations associated with the device or service activation
- May be used to "bridge" loading / update processes
- General user expectation from game consoles, adopted by Google TV, Apple TV and others
 - Apple Boot Sound legacy
 - Apple TV Welcome Movie

Ex4: Atmosphere

- Long and subtle background atmosphere
- Functional sounds (menu navigation) embedded in a sonic environment

Ex5: Diversity, Design Refresh

- Comprehensive sound use
- Startup and functional sounds with variations
- Sound redesign for significant updates

After update

Sonification: Data-based sonification

- Data-based sonification: data relationships are mapped to tonal parameters. "Auditory Graphs"
- Up to 8 parallel streams can be displayed!
- applications in medicine, biometrics, geology, economic analysis, scientific presentation in general ...

The state of the s

Sonification: Data-based sonification

Basic physical properties

- To create sound, vibration is needed
- To generate vibration, a physical force on an elastic object is needed
- A resonator transmits and "shapes" the vibrations into the air
- The type of material and the mass affect the vibration behavior
- Basic elements of the sound: Amplitude, period, frequency (f)
- Propagation speed "c" in the air? = About 343m / s

https://www.bbc.co.uk/bitesize/guides/zdc6fg8/revision/2

Description of acoustic events

pitch -> frequency:80hz, 160hz, 320hz, 640hz, 1280hz,2540hr, 5080hz, 10160hz

volume -> amplitudez.B: OdB, -6dB, -12dB

Timbre -> frequency spectrum

More about timbre

- Makes two sounds of the same pitch and volume distinguishable
- Is determined by the frequency spectrum
- Can change over time
- Changes time-dependent! (eg backwards played piano or "white noise" with "wavy" volume curve)

white noise...

waves

Visual representation of sounds

- Murray Schafer's method (simplification of Schaeffer):

Description of a sound event.

FOG HORN				CHURCH BELL		
Attack	Body	Decay		Attack	Body	Decay
L			Duration			
			Frequency/Mass			
M			Fluctuations/ Grain	M		
mf 	f	mf	Dynamics	f ===		
	- 2 sec.	→			- 10 sec.	$\xrightarrow{1}$

BARK OF A DOG				SONG OF A BIRD		
Attack	Body	Decay		Attack	Body	Decay
			Duration	L		
	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	5	Frequency/Mass			
?	why	?	Fluctuations/ Grain	MM		many
f		f	Dynamics	mf	mf	mf
	- 1 sec.			<	- 3 sec.	

Higher levels of meaning

- "Archetypes" (wind, rain, crying baby ...)
- Symbolic (religious, cultural ...)
- "Sacred" sounds, sound and power
- Signals (bells, horns ...)

- Symbols (culturally "charged", eg animals, keys ...)
- KeySounds (strategically used in a narrative context)

- Stereotypes (generated by repetitive, contextualized use)
- «Theme» (eg in Starwars)

A New Generation of Commodities

- Everyday objects meet Information & Communication
 Technologies -> INTERACTIVE COMMODITIES
 - Devices get smaller, screens lose importance, overload of the visual channel
 - Sound conveys information, meaning, supports performance and affects the experience of interactive artifacts or systems
- Exploring narrative and performative sound design strategies
- Fast and inspiring iterative prototyping

An "authentic" mouse?

EV, HEV, PHEV – How Does this Car Sound?

Electric car owners to 'choose' engine sounds

- Artificial engine sounds available on existing models, such as the Mitsubishi Outlander, generally make the hum of the battery-driven engine louder.
- Mercedes AMG has worked with rock band Linkin Park to make distinctive sounds for its electric vehicles.
- Porsche offers a \$500 (£400) upgrade to its Taycan sports car that boosts the volume of its electric motor to make it sound more like a petrol engine.
- Nissan has trialled a warning system called Canto that adds a choral element to the engine's whirr.

https://www.bbc.com/news/technology-49726841

Roles of Sound in SID (Franinovic, Hug, Visell 2007)

- Supports new functions or display possibilities for products
 - Displaying new informational possibilities
 - Displaying invisible affordances of an ICT-enhanced artifact
 - Providing the possibility of displaying more information using multimodal channels
- Shape the sonic "appearance" of an artifact
 - Improving the aesthetic experience and sonic quality
 - Extending the emotional aspects of the design
 - Enhancing the interplay between material, form and action
- Improve the performance in interaction processes
 - Feedback supports the use/control of interfaces, device, tool or a physical activity
 - Sonification of processes and states
 - Improvement of focus and flow during task execution

Relationship of Sound and Objects

- Sound and physical properties
 - Direct relation to, and evocative of, material properties and processes of an object (and the related meaning potential)
 - Sonic and haptic experience similar
 - -> 1st order sound semantics: Information about artifact & use: Feedback, notification, (mecanical) processes
 - Several sounds can be combined to basic "narratives"

- Beyond sonic causalism and naturalism
 - Sound can give presence to a inexistent object or process mental models
 - Upon recording, sound develops a quality independent from it's original source

Expressive Performance, Sound – Action Relationships

- Specific relationships between actions, movements, object qualities and sonic structures can be observed / designed
- Not necessarily isomorphous! 3 relationships (Chion 1998)
 - Isomorphous / direct link: Turning the throttle on a motorcycle
 - Link indirect, delayed or established through knowledge about it: Long, sustained tone of a violin
 - Not isomorphous, gesture triggers sound, which develops autonomously: e.g. hitting a gong.
- Manipulations vs. Trigger/hold relationships
- Ergo-Audition (Chion 1998):
 - Positive sign of own influence on world
 - More than just feedback: Meaningful, nuanced sounds evoke the "joy of hearing oneself"
 - "Differential of power"
 - Goal: design sustainable and meaningful sounds that are enjoyed during interaction.

Gestural Metaphors and Affordances: Audioshaker (Jenkins 2005)

Design as Research as Design

