
INTERACTION DESIGN

Physical Computing HS22

MQTT

MQTT is standard messaging protocol for the Internet of Things
(IoT). It is designed as an extremely lightweight publish/subscribe
messaging transport that is ideal for connecting remote devices
with a small code footprint and minimal network bandwidth.

MQTT

MQTT

• Connect and communicate between different devices

• Designed for resource-constrained devices

• Used across platforms while consuming minimal bandwidth

• Easy integration of new devices

• Getting data from Arduino via WIFI!

PUBLISH / SUBSCRIBE

Temperature
Vibration

Publ
ish

Pu
bl
is
h

Sub
scr

ibe

Subscribe

Publish

MQTT messages are published and subscribed to as a payload i.e the essential data
that is being carried within a packet. A payload is a string formatted piece of
information that can be e.x. value from a sensor, user interaction etc.

MQTT BROKERS

MQTT

SHIFTR.IO

• Developed at ZHdK in 2015 by Joël Gähwiler as MA project.

• Open-source and free to use (limit of messages)

• Cloud or desktop-based (more bandwidth, and less latency)

• The payload size of publish messages is limited to 64 KB.

• The active subscriptions per connection are limited to 100.

INTERACTION DESIGN

Physical Computing HS22

SHIFTR.IO + ARDUINO

http://shiftr.io

shiftr.io

Connect to our own WiFi, ZHDK does not allow to send data over
network, as the connections are not secure.

SSID : iad_zhdk
Password: i@d_4ever

1.After plugging in Arduino Uno WiFi install the board in:
Arduino—>Tools—>Board—>Boards Manager

2. Install Arduino megaAVR Boards library:

3.Select the board in :
Arduino—>Tools—>Board—>Arduino megaAVR Boards—>Arduino Uno WiFi Rev2

4.Go to:
Tools —> WiFi/WiFiNINA Firmware Updater

3.Select your board and click “Install”. If your board is not visible make
sure you selected it in:
Arduino—>Tools—>Port

shiftr.io

Install MQTT by Joel Gaehwiler in Library Manager:

shiftr.io

Example 1

Send data from Arduino to Arduino using shiftr.io

In groups of two decide who is going to be the sender and who the receiver.

http://shiftr.io

Connect to client
client.connect("sender", "physical-computing-zhdk", "QO1d1kxcIhqD2pi2")

”sender”: client ID displayed as the connection name

”physical-computing-zhdk”: name of the instance you send data to

“O1d1kxcIhqD2pi2”: secret token configured in the settings panel

shiftr.io

Start Instance

client.begin("physical-computing-zhdk.cloud.shiftr.io", net);

"physical-computing-zhdk.cloud.shiftr.io": instance domain

net: depends on the chosen network client. Use net!

shiftr.io

Receiving Messages

 client.subscribe(“ledBlink");

“ledBlink” : the name of the topic to subscribe.

Sending Messages

 client.publish("/ledBlink", String(ledBlink));

“ledBlink" : the topic to publish the message to.

String(ledBlink) : the payload of the message. IT HAS TO BE A STRING!

shiftr.io

Exercise 1

Sign up to shiftr.io and deploy your own shiftr.io instance and
adapt the values in the Arduino code from Example 1 to match

your own credentials.

http://shiftr.io
http://shiftr.io

Exercise 2

In groups of two decide who is going to be the sender and who is
going to be the receiver.

The receiver: Connect a LED to Arduino (values from 0 to 255)
The sender: Connect a potentiometer to Arduino (values from 0 to
1023)

Adapt the code so that the sender fades in/out the LED of the
receiver by sending the values received from potentiometer via
shiftr.io

For this exercise decide whose shiftr.io instance you are going
to use!

http://shiftr.io
http://shiftr.io

INTERACTION DESIGN

Physical Computing HS22

SHIFTR.IO + P5.JS

http://shiftr.io

Example 2

Send data from Arduino to p5.js via shiftr.io

shiftr.io

let broker = {
 hostname: 'physical-computing-zhdk.cloud.shiftr.io',
 port: 443
};

let creds = {
clientID: ‘p5',
userName: ‘physical-computing-zhdk',
password: ‘QO1d1kxcIhqD2pi2'

}

http://shiftr.io

For shiftr.io Cloud instances the interface is available over the
insecure port 1883 (TCP), secure port 8883 (TLS) and secure WebSocket
port 443 (WSS/HTTPS).

With shiftr.io Desktop the interface is only available over the
insecure port 1883 (TCP) and WebSocket port 1884 (WS/HTTP) due to the
lack of a certificate. Other ports are selected if one of the ports is
already in use by another application.

shiftr.io

Exercise 3

Create a new topic called “diameter”

Control the diameter of the circle from Example 2 using the values from
a potentiometer plugged into Arduino.

Make sure you don’t go above the diameter of 300.

Exercise 4

Connect LED to your Arduino and control its brightness (analogWrite())
with a p5.js slider.

Use createSlider() function and slider.value(). Make sure the range of
your slider is between 0 and 255.

Example 3

Using the p5.js color picker change the colors of a NeoPixel attached to
Arduino on pin 6.

Make sure you connect NeoPixel DIN pin (not DOUT)!

