INTERACTION DESIGN

Physical Computing HS22

MQTT

MQTT is standard messaging protocol for the Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging transport that is ideal for connecting remote devices with a small code footprint and minimal network bandwidth.

MQTT

- Connect and communicate between different devices
- Designed for resource-constrained devices
- Used across platforms while consuming minimal bandwidth
- Easy integration of new devices
- Getting data from Arduino via WIFI!

PUBLISH / SUBSCRIBE

MQTT messages are published and subscribed to as a **payload** i.e the essential data that is being carried within a packet. A payload is a string formatted piece of information that can be e.x. value from a sensor, user interaction etc.

MQTT BROKERS

SHIFTR. IO

- Developed at ZHdK in 2015 by Joël Gähwiler as MA project.
- Open-source and free to use (limit of messages)
- Cloud or desktop-based (more bandwidth, and less latency)
- The payload size of publish messages is limited to 64 KB.
- The active subscriptions per connection are limited to 100.

INTERACTION DESIGN

SHIFTR. IO + ARDUINO

Physical Computing HS22

Connect to our own WiFi, ZHDK does not allow to send data over network, as the connections are not secure.

SSID: iad_zhdk

Password: i@d_4ever

1.After plugging in Arduino Uno WiFi install the board in: Arduino—>Tools—>Board—>Boards Manager

2. Install Arduino megaAVR Boards library:

3. Select the board in :

Arduino—>Tools—>Board—>Arduino megaAVR Boards—>Arduino Uno WiFi Rev2

4.Go to:

Tools -> WiFi/WiFiNINA Firmware Updater

3. Select your board and click "Install". If your board is not visible make sure you selected it in:

Arduino->Tools->Port

Install MQTT by Joel Gaehwiler in Library Manager:

Example 1

Send data from Arduino to Arduino using <u>shiftr.io</u>

In groups of two decide who is going to be the sender and who the receiver.

Connect to client

client.connect("sender", "physical-computing-zhdk", "Q01d1kxcIhqD2pi2")

"sender": client ID displayed as the connection name

"physical-computing-zhdk": name of the instance you send data to

"01d1kxcIhqD2pi2": secret token configured in the settings panel

Start Instance

client.begin("physical-computing-zhdk.cloud.shiftr.io", net);

"physical-computing-zhdk.cloud.shiftr.io": instance domain

net: depends on the chosen network client. Use net!

Receiving Messages

client.subscribe("ledBlink");

"ledBlink": the name of the topic to subscribe.

Sending Messages

client.publish("/ledBlink", String(ledBlink));

"ledBlink": the topic to publish the message to.

String(ledBlink): the payload of the message. IT HAS TO BE A STRING!

Exercise 1

Sign up to <u>shiftr.io</u> and deploy your own <u>shiftr.io</u> instance and adapt the values in the Arduino code from Example 1 to match your own credentials.

Exercise 2

In groups of two decide who is going to be the sender and who is going to be the receiver.

The receiver: Connect a LED to Arduino (values from 0 to 255)

The sender: Connect a potentiometer to Arduino (values from 0 to 1023)

Adapt the code so that **the sender** fades in/out the LED of **the receiver** by sending the values received from potentiometer via shiftr.io

For this exercise decide whose <u>shiftr.io</u> instance you are going to use!

INTERACTION DESIGN

SHIFTR.IO + P5.JS

Physical Computing HS22

Example 2

Send data from Arduino to p5.js via shiftr.io

```
let broker = {
    hostname: 'physical-computing-zhdk.cloud.shiftr.io',
    port: 443

};

let creds = {
    clientID: 'p5',
    userName: 'physical-computing-zhdk',
    password: 'Q01d1kxcIhqD2pi2'
}
```

For shiftr.io Cloud instances the interface is available over the insecure port 1883 (TCP), secure port 8883 (TLS) and secure WebSocket port 443 (WSS/HTTPS).

With shiftr.io Desktop the interface is only available over the insecure port 1883 (TCP) and WebSocket port 1884 (WS/HTTP) due to the lack of a certificate. Other ports are selected if one of the ports is already in use by another application.

Exercise 3

Create a new topic called "diameter"

Control the diameter of the circle from Example 2 using the values from a potentiometer plugged into Arduino.

Make sure you don't go above the diameter of 300.

Exercise 4

Connect LED to your Arduino and control its brightness (analogWrite()) with a p5.js slider.

Use createSlider() function and slider.value(). Make sure the range of your slider is between 0 and 255.

Example 3

Using the p5.js color picker change the colors of a NeoPixel attached to Arduino on pin 6.

Make sure you connect NeoPixel DIN pin (not DOUT)!