

Designing Interfaces

Designing Interfaces
Second Edition

Jenifer Tidwell

Beijing  ·  Cambridge  ·  Farnham  ·  Köln  ·  Sebastopol  ·  Tokyo

Designing Interfaces, Second Edition
by Jenifer Tidwell

Copyright © 2011 Jenifer Tidwell. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo-
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Rachel Monaghan
Copyeditor: Audrey Doyle
Proofreader: Emily Quill

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: Ron Bilodeau
Illustrator: Robert Romano

Printing History:

November 2005: First Edition.

December 2010: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Designing Interfaces, the image of a Mandarin duck, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-37970-4
[TI]	

Contents

Introduction to the Second Edition . xi

Preface. xv

1.	 What Users Do . 1
A Means to an End	 2
The Basics of User Research	 4
Users’ Motivation to Learn	 6
The Patterns	 8

Safe Exploration	 9
Instant Gratification	 10
Satisficing	 11
Changes in Midstream	 12
Deferred Choices	 12
Incremental Construction	 14
Habituation	 14
Microbreaks	 16
Spatial Memory	 17
Prospective Memory	 18
Streamlined Repetition	 19
Keyboard Only	 20
Other People’s Advice	 21
Personal Recommendations	 22

vi  Contents

2.	 Organizing the Content:
Information Architecture and Application Structure 25
The Big Picture	 26
The Patterns	 29

Feature, Search, and Browse 	 30
News Stream 	 34
Picture Manager 	 40
Dashboard 	 45
Canvas Plus Palette 	 50
Wizard 	 54
Settings Editor 	 59
Alternative Views 	 64
Many Workspaces 	 68
Multi-Level Help	 71

3.	 Getting Around: Navigation, Signposts, and Wayfinding 77
Staying Found	 77
The Cost of Navigation	 78
Navigational Models	 80
Design Conventions for Websites	 85
The Patterns	 86

Clear Entry Points 	 87
Menu Page 	 90
Pyramid 	 94
Modal Panel 	 97
Deep-linked State 	 100
Escape Hatch	 104
Fat Menus 	 106
Sitemap Footer 	 110
Sign-in Tools 	 115
Sequence Map 	 118
Breadcrumbs 	 121
Annotated Scrollbar 	 124
Animated Transition 	 127

Contents  vii 

4.	 Organizing the Page: Layout of Page Elements . 131
The Basics of Page Layout	 132
The Patterns	 140

Visual Framework	 141
Center Stage	 145
Grid of Equals	 149
Titled Sections	 152
Module Tabs	 155
Accordion	 159
Collapsible Panels	 163
Movable Panels	 168
Right/Left Alignment	 173
Diagonal Balance	 176
Responsive Disclosure	 179
Responsive Enabling	 182
Liquid Layout	 186

5.	 Lists of Things . 191
Use Cases for Lists	 192
Back to Information Architecture	 192
Some Solutions	 194
The Patterns	 197

Two-Panel Selector 	 198
One-Window Drilldown 	 202
List Inlay 	 206
Thumbnail Grid 	 210
Carousel	 215
Row Striping	 220
Pagination 	 224
Jump to Item	 228
Alphabet Scroller 	 230
Cascading Lists	 232
Tree Table 	 234
New-Item Row	 236

viii  Contents

6.	 Doing Things: Actions and Commands . 239
Pushing the Boundaries	 242
The Patterns	 245

Button Groups 	 246
Hover Tools 	 249
Action Panel 	 252
Prominent “Done” Button 	 257
Smart Menu Items 	 261
Preview 	 263
Progress Indicator 	 266
Cancelability 	 269
Multi-Level Undo 	 271
Command History 	 275
Macros 	 278

7.	 Showing Complex Data:
Trees, Charts, and Other Information Graphics . 281
The Basics of Information Graphics	 281
The Patterns	 294

Overview Plus Detail	 296
Datatips	 299
Data Spotlight	 303
Dynamic Queries	 308
Data Brushing	 312
Local Zooming	 316
Sortable Table	 320
Radial Table	 323
Multi-Y Graph	 328
Small Multiples	 331
Treemap	 336

Contents  ix 

8.	 Getting Input from Users: Forms and Controls . 341
The Basics of Form Design	 341
Control Choice	 344
The Patterns	 356

Forgiving Format	 357
Structured Format	 360
Fill-in-the-Blanks	 362
Input Hints	 364
Input Prompt	 369
Password Strength Meter	 371
Autocompletion	 375
Dropdown Chooser	 380
List Builder	 383
Good Defaults	 385
Same-Page Error Messages	 388

9.	 Using Social Media . 393
What This Chapter Does Not Cover	 394
The Basics of Social Media	 394
The Patterns	 398

Editorial Mix 	 398
Personal Voices	 402
Repost and Comment 	 406
Conversation Starters	 410
Inverted Nano-pyramid	 413
Timing Strategy	 416
Specialized Streams	 419
Social Links	 423
Sharing Widget 	 426
News Box 	 430
Content Leaderboard	 434
Recent Chatter	

x  Contents

10.	 Going Mobile . 441
The Challenges of Mobile Design	 442
The Patterns	 448

Vertical Stack 	 449
Filmstrip	 452
Touch Tools 	 454
Bottom Navigation 	 456
Thumbnail-and-Text List 	 459
Infinite List	 462
Generous Borders 	 464
Text Clear Button 	 467
Loading Indicators 	 468
Richly Connected Apps	 470
Streamlined Branding 	 473

11.	 Making It Look Good: Visual Style and Aesthetics . 477
Same Content, Different Styles	 479
The Basics of Visual Design	 488
What This Means for Desktop Applications	 496
The Patterns	 498

Deep Background	 499
Few Hues, Many Values	 503
Corner Treatments	 507
Borders That Echo Fonts	 509
Hairlines	 513
Contrasting Font Weights	 516
Skins and Themes	 519

References . 523

Index . 527

Introduction to the Second Edition

In the five years since the first edition of Designing Interfaces was published, many things
have changed.

Most user interface designers—who might now play the roles of user experience (UX) de-
signers, or interaction designers, or information architects, or any of several other titles—
now do their work on the Web. Countless websites, web services, web-delivered software,
blogs, and online stores need good design, and it’s becoming easier and easier to deliver
these finished products in ridiculously short turnaround times. Many of these are highly
interactive, but even traditional websites—static and straightforward in the past—now
contain components that are dynamic and interactive, such as video players and social
network content. There’s a lot of designing going on!

Compared to a few years ago, not as much of that designing is being done for desktop
applications. Of course, all of us technology users depend upon the complex software
installed on our laptops and desktops. Our email clients, browsers, document editors,
domain-specific software, and operating systems are still important parts of our online
lives. But many aspects of their interface designs have stabilized. As a result, since the
early 2000s, the audience for design books has shifted away from desktop design toward
web-based design.

Here’s another change: mobile design, which was still immature in 2005, has flourished.
With iPhones and other complex mobile devices now spreading everywhere, putting the
whole Web in our pockets, many designers have been forced to face the special problems
inherent to mobile design. How should mobile concerns change interface design, espe-
cially for websites? That’s a question we’re still collectively trying to answer, but the design
community has learned some approaches and techniques that work.

Also, designers cannot ignore the influence of online social networks. When I’m in the
early phase of a design project, I need to think about its connections to blogs, Twitter,
Facebook, comment areas, forums, and all the other ways that people talk to one another
online. I would be remiss not to do so. Users spend a lot of their online time “doing” social

xii  Introduction to the Second Edition

interaction, and sophisticated users expect social-network support as a matter of course.
It’s unusual now to find any website that doesn’t somehow connect to or from a social
service (and usually several).

But wait, there’s more! Since this book was first published, the UX design world has dis-
covered the value of patterns, and other UX-related pattern collections have appeared on
the scene. Many of them are quite good. Some took patterns originally set forth here and
elaborated upon them, changed them, renamed them according to emergent conventions,
or presented new information about them. Others created new patterns in areas that this
book didn’t cover well—especially social, mobile, gestural, search, and RIA-style inter-
faces. (I list the best of these other pattern collections in the preface, in the References
section, and in the patterns themselves.)

So is the material written in 2005 still relevant?

To a large extent, yes. The human mind hasn’t changed—visual hierarchies still work,
progressive disclosure still works, and moving things still attract the attention of our rep-
tilian brains. Good patterns based on fundamental design principles are just as valid now
as they were 5, 10, or 20 years ago. But other patterns weren’t as well grounded or have
fallen out of favor. This second edition gave me the privilege of hindsight: I was granted
the time to figure out how well these patterns have endured, and then report on them.
And, indeed, a few have been removed from this book.

But most of them remain, because they still work. They’ve been updated with fresh ex-
amples, and in some cases with fresh research into their effectiveness. In addition, I’ve
written (or borrowed) new patterns to reflect the changes of the last five years. The next
section describes these changes in some detail.

Changes in the Second Edition
Here’s what you’re getting in this book:

A chapter about social media
Chapter 9, Using Social Media, lays out some tactics and patterns for integrating so-
cial media into a site or application. The chapter does not cover all aspects of social
interfaces; it’s meant to be complementary to existing works on the subject, especially
Designing Social Interfaces (O’Reilly, http://oreilly.com/catalog/9780596154936/).

A chapter about mobile design
Chapter 10, Going Mobile, contains some patterns that are specific to mobile devices.
In particular, the patterns are aimed at the platforms most designers are likely to target:
touch-screen devices with full connectivity, such as iPhones. Both apps and websites
are covered. Again, this is not intended to cover all aspects of mobile design—simply
the patterns and ideas that can help you create a graceful mobile interface even if you’re
not a mobile UI specialist.

http://oreilly.com/catalog/9780596154936/

Introduction to the Second Edition  xiii 

The existence of this chapter brings up an interesting point. A “good” pattern should
be invariant across different platforms, perhaps including mobile ones. However,
mobile design introduces so many new constraints on screen size, interactive ges-
tures, social expectations, and latency that some patterns simply don’t work well for
it. Conversely, most of the patterns written specifically for mobile contexts don’t work
well (or aren’t particularly salient design solutions) for larger screens; those patterns
have a home in Chapter 10.

Reorganized chapters and rewritten introductions
Because there were so many old and new patterns about how to present lists of items,
I chose to “refactor” three chapters to account for that. Chapter 5 is now simply
about lists. It pulled patterns from the first edition’s Chapter 2 (Two-Panel Selector,
One-Window Drilldown) and Chapter 7 (Row Striping and Cascading Lists). I also added
several new ones, such as List Inlay and Alphabetic Scroller.
Furthermore, the introductions to the chapters on information architecture (Chapter
2), navigation (Chapter 3), and page layout (Chapter 4) have been rewritten to reflect
recent design thinking and a new emphasis on web-based or web-like designs.

New patterns that capture popular new interactions
Some techniques have really caught on in the last five years, and the ones that seem to
be “pattern-like”—they are abstractable and cross-genre, they’re common enough to
be easy to find, and they can noticeably improve the user experience—are represent-
ed here. Examples include Fat Menus, Sitemap Footer, Hover Tools, Password Strength
Meter, Data Spotlight, and Radial Table.

New patterns that aren’t really “new,” but that were not included in the first edition
These ideas have been kicking around for a while, but either I didn’t recognize them
as being important back in 2005, or they weren’t especially salient back then. They
are now. This list of patterns includes Dashboard, News Stream, Carousel, Grid of Equals,
Microbreaks, Picture Manager, and Feature, Search, and Browse.

Renamed patterns, and patterns whose scope has changed
For instance, Card Stack was renamed to Module Tabs, and Closable Panels to Collapsible
Panels; I made these changes to conform to current terminology and other pattern
libraries. Similarly, Accordion was factored out from Collapsible Panels and made into
its own pattern, since other designers, design writers, and pattern collections have
converged on the term “accordion” for this particular technique. Meanwhile, One-
Window Drilldown and Two-Panel Selector—both from the original book’s chapter on
information architecture—have been narrowed down to deal specifically with lists of
items.

New examples, new research, and new connections to other pattern libraries
Almost every pattern has at least one new pictorial example, and many of them have
an “In other libraries” section that directs the reader to the same pattern (or patterns
that closely resemble it) in other collections. These might provide you with new in-
sights or examples. Also, some patterns in this book have been slightly rewritten to

xiv  Introduction to the Second Edition

account for new thinking or research on the issue. Row Striping is one of these; some
experiments were run to find out the value of the technique, and the pattern refers
you to those results.

Some individual patterns have been removed
Many of these have passed into the realm of “blindingly obvious to everyone,” and
while they’re still useful as design tools, their value as part of this book is dimin-
ished. This list includes Extras on Demand, Intriguing Branches, Global Navigation, and
Illustrated Choices. Others are no longer used much in contemporary designs, such as
Color-Coded Sections.

The “Builders and Editors” chapter is gone
Designers still work on these types of applications, of course, but I honestly couldn’t
find much to change in that set of patterns in terms of new work and updated exam-
ples. I also discovered in a survey that readers found this to be one of the least valu-
able chapters. Because I wanted to keep the book size down to something reasonable,
I chose to remove that chapter to make room for the new material.

Finally, I want to talk briefly about what you won’t find in this new edition. The following
areas are so well covered by other published (or forthcoming) pattern collections that I
saw little need to put them into this edition:

•	 Search

•	 General social interfaces

•	 Gestural interfaces

•	 More depth in mobile design

•	 Types of animated transitions

•	 Help techniques

I hope that in the next few years, we’ll see new sets of patterns for other areas of design:
online games, geographic systems, online communities, and more. I see a rich and reward-
ing area of inquiry here, and that’s terrific. I encourage other design thinkers to jump in and
write other patterns—or challenge us pattern writers to make the existing collections better!

Preface

Once upon a time, interface designers worked with a woefully small toolbox.

We had a handful of simple controls: text fields, buttons, menus, tiny icons, and modal
dialogs. We carefully put them together according to the Windows Style Guide or the
Macintosh Human Interface Guidelines, and we hoped that users would understand the
resulting interface—and too often, they didn’t. We designed for small screens, few colors,
slow CPUs, and slow networks (if the user was connected at all). We made them gray.

Things have changed. If you design interfaces today, you work with a much bigger palette
of components and ideas. You have a choice of many more user interface toolkits than be-
fore, such as the Java toolkits, HTML/CSS, JavaScript, Flash, and numerous open source
options. Apple’s and Microsoft’s native UI toolkits are richer and nicer-looking than they
used to be. Display technology is better. Web applications often look as professionally
designed as the websites they’re embedded in, and some of those web sensibilities have
migrated back into desktop applications in the form of blue underlined links, Back/Next
buttons, beautiful fonts and background images, and non-gray color schemes.

But it’s still not easy to design good interfaces. Let’s say you’re not a trained or self-taught
interface designer. If you just use the UI toolkits the way they should be used, and if you
follow the various style guides or imitate existing applications, you can probably create a
mediocre but passable interface.

Alas, that may not be enough anymore. Users’ expectations are higher than they used to
be—if your interface isn’t easy to use “out of the box,” users will not think well of it. Even if
the interface obeys all the standards, you may have misunderstood users’ preferred work-
flow, used the wrong vocabulary, or made it too hard to figure out what the software even
does. Impatient users often won’t give you the benefit of the doubt. Worse, if you’ve built
an unusable website or web application, frustrated users can give up and switch to your
competitor with just the click of a button. So the cost of building a mediocre interface is
higher than it used to be, too.

xvi  Preface

Devices like phones, TVs, and car dashboards once were the exclusive domain of indus-
trial designers. But now those devices have become smart. Increasingly powerful comput-
ers drive them, and software-based features and applications are multiplying in response
to market demands. They’re here to stay, whether or not they are easy to use. At this rate,
good interface and interaction design may be the only hope for our collective sanity in
10 years.

Small Interface Pieces, Loosely Joined
As an interface designer trying to make sense of all the technology changes in the last
few years, I see two big effects on the craft of interface design. One is the proliferation of
interface idioms: recognizable types or styles of interfaces, each with its own vocabulary of
objects, actions, and visuals. You probably recognize all the ones shown in Figure P-1, and
more are being invented all the time.

Forms Text editors Graphic editors

Spreadsheets Browsers Calendars

Media players Information graphics Immersive games

Web pages Social spaces E-commerce sites

Figure P-1. A sampler of interface idioms

Preface  xvii 

The second effect is a loosening of the rules for putting together interfaces from these
idioms. It no longer surprises anyone to see several of these idioms mixed up in one
interface, for instance, or to see parts of some controls mixed up with parts of other con-
trols. Online help pages, which long have been formatted in hypertext anyway, might now
include interactive applets, animations, or links to a web-based bulletin board. Interfaces
themselves might have help texts on them, interleaved with forms or editors; this situation
used to be rare. Combo boxes’ drop-down menus might have funky layouts, like color
grids or sliders, instead of the standard column of text items. You might see web applica-
tions that look like document-centered paint programs, but have no menu bars, and save
the finished work only to a database somewhere.

The freeform-ness of web pages seems to have taught users to relax their expectations
with respect to graphics and interactivity. It’s OK now to break the old Windows style-
guide strictures, as long as users can figure out what you’re doing.

And that’s the hard part. Some applications, devices, and web applications are easy to use.
Many aren’t. Following style guides never guaranteed usability anyhow, but now designers
have even more choices than before (which, paradoxically, can make design a lot harder).
What characterizes interfaces that are easy to use?

One could say, “The applications that are easy to use are designed to be intuitive.” Well,
yes. That’s almost a tautology.

Except that the word “intuitive” is a little bit deceptive. Jef Raskin once pointed out that
when we say “intuitive” in the context of software, we really mean “familiar.” Computer
mice aren’t intuitive to someone who’s never seen one (though a growling grizzly bear
would be). There’s nothing innate or instinctive in the human brain to account for it. But
once you’ve taken ten seconds to learn to use a mouse, it’s familiar, and you’ll never forget
it. Same for blue underlined text, play/pause buttons, and so on.

Rephrased: “The applications that are easy to use are designed to be familiar.”

Now we’re getting somewhere. “Familiar” doesn’t necessarily mean that everything about
a given application is identical to some genre-defining product (e.g., Word, Photoshop,
Mac OS, or a Walkman). People are smarter than that. As long as the parts are recogniz-
able enough and the relationships among the parts are clear, then people can apply their
previous knowledge to a novel interface and figure it out.

That’s where patterns come in. This book catalogs many of those familiar parts, in ways
you can reuse in many different contexts. Patterns capture a common structure—often a
very local one, such as a list layout—without being too concrete on the details, which gives
you the flexibility to be creative.

If you know what users expect of your application, and if you choose carefully from your
toolbox of idioms and frameworks (large-scale), individual elements (small-scale), and
patterns (covering the range), then you can put together something that “feels familiar”
while remaining original.

And that gets you the best of both worlds.

xviii  Preface

About Patterns in General
In essence, patterns are structural and behavioral features that improve the “habitabil-
ity” of something—a user interface, a website, an object-oriented program, or a building.
They make things easier to understand or more beautiful; they make tools more useful
and usable.

As such, patterns can be a description of best practices within a given design domain.
They capture common solutions to design tensions (usually called “forces” in pattern lit-
erature) and thus, by definition, are not novel. They aren’t off-the-shelf components; each
implementation of a pattern differs a little from every other. They aren’t simple rules or
heuristics either. And they won’t walk you through an entire set of design decisions—if
you’re looking for a complete step-by-step description of how to design an interface, a
pattern catalog isn’t the place to find it!

Patterns are:

Concrete, not general
All designers depend upon good design principles, like “Prevent errors,” “Create a
strong visual hierarchy,” and “Don’t make the user think.” It’s rather hard, however,
to design an actual working interface starting from fundamental principles! Patterns
are concrete enough to help fill the space between high-level general principles and
the low-level “grammar” of user interface design (widgets, text, graphic elements,
alignment grids, and so on).

Valid across different platforms and systems
Patterns may be more concrete than principles or heuristics, but they do define ab-
stractions—the best patterns aren’t specific to a single platform or idiom. Some even
work in both print and interactive systems. Ideally, each pattern captures some minor
truth about how people work best with a created artifact, and it remains true even
while the underlying technologies and media change.

Products, not processes
Unlike heuristics or user-centered design techniques, which usually advise on how to
go about finding a solution to an engineering or design problem, patterns are possible
solutions.

Suggestions, not requirements
You should almost always follow good design principles and heuristics, of course.
And organizations need designers to follow style guides so that their products stay
self-consistent. But patterns are intended to be only suggestions; you can follow them
or reject them, depending on your design context and user needs.

Preface  xix 

Relationships among elements, not single elements
A text field is not a pattern. The spatial relationships between a text field and a piece
of help text near it, however, might be a pattern. Likewise, changes in a set of elements
over time—as a user interacts with the software—may constitute a pattern, though
some patterns capture only static relationships.

Customized to each design context
When a pattern is instantiated in a design, the designer should adjust the pattern as
needed to fit the situation. You could use some of the pattern examples verbatim, but
as long as you understand why the pattern works, why not be creative? Fit the pattern
to your particular users and requirements.

Some very complete sets of patterns make up a “pattern language.” These patterns resem-
ble visual languages in that they cover the entire vocabulary of elements used in a design
(though pattern languages are more abstract and behavioral; visual languages talk about
shapes, icons, colors, fonts, etc.). The set in this book isn’t nearly as complete, and it con-
tains techniques that don’t qualify as traditional patterns. But at least it’s concise enough
to be manageable and useful.

Other Pattern Collections
The text that started it all dealt with physical buildings, not software. Christopher Alexander’s
A Pattern Language and its companion book The Timeless Way of Building established the
concept of patterns and described a 250-pattern multilayered pattern language. It is often
considered the gold standard for a pattern language because of its completeness, its rich
interconnectedness, and its grounding in the human response to our built world.

In the mid-1990s, the publication of Design Patterns by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides profoundly changed the practice of commercial soft-
ware architecture. This book is a collection of patterns describing object-oriented “micro-
architectures.” If you have a background in software engineering, this is the book that
probably introduced you to the idea of patterns. Many other authors have written books
about software patterns since this book. Software patterns such as these do make software
more habitable—for those who write the software, not those who use it!

The first substantial set of user-interface patterns was “Common Ground,” the pre
decessor to the book you’re reading now. Many other collections and languages followed,
notably Martijn van Welie’s Interaction Design Patterns; van Duyne, Landay, and Hong’s
The Design of Sites; the Little Springs mobile patterns, now known as Design4Mobile; the
Yahoo! Design Pattern Library, which morphed into Designing Web Interfaces; and the
rest of the O’Reilly design pattern library, including Designing Social Interfaces, Designing
Gestural Interfaces, and the first edition of this book.

xx  Preface

About the Patterns in This Book
So there’s nothing really new in here. If you’ve done any web or UI design, or even thought
much about it, you should say, “Oh, right, I know what that is” to most of these patterns.
But a few of them might be new to you, and some of the familiar ones may not be part of
your usual design repertoire.

These patterns work for both desktop applications and highly interactive websites. Many
patterns also apply to mobile devices or TV-based interfaces (like digital recorders).

Though this book won’t exhaustively describe all the interface idioms mentioned ear-
lier, these idioms help to organize the book. Some chapters focus on the more common
idioms: forms, information graphics, mobile interfaces, and interactions with social net-
works. Other chapters address subjects that are useful across many idioms, such as orga-
nization, navigation, actions, and visual style. (The book does not address idioms such as
online games or communities, simply due to lack of space.)

This book is intended to be read by people who have some knowledge of such inter-
face design concepts and terminology as dialog boxes, selection, combo boxes, naviga-
tion bars, and whitespace. It does not identify many widely accepted techniques, such as
copy-and-paste, since you already know what they are. But, at the risk of belaboring the
obvious, this book describes some common techniques to encourage their use in other
contexts or to discuss them alongside alternative solutions.

This book does not present a complete process for constructing an interface design. When
doing design, a sound process is critical. You need to have certain elements in a design process:

•	 Field research, to find out what the intended users are like and what they already do

•	 Goal and task analysis, to describe and clarify what users will do with what you’re
building

•	 Design models, such as personas (models of users), scenarios (models of common
tasks and situations), and prototypes (models of the interface itself)

•	 Empirical testing of the design at various points during development, like usability
testing and in situ observations of the design used by real users

•	 Enough time to iterate over several versions of the design, because you won’t get it
right the first time

These topics transcend the scope of this book, but there are plenty of other excellent re-
sources and workshops out there that cover them in depth.

But there’s a deeper reason why this book won’t give you a recipe for designing an interface.
Good design can’t be reduced to a recipe. It’s a creative process, and one that changes under
you as you work—in any given project, for instance, you won’t understand some design is-
sues until you’ve designed your way into a dead end. I’ve personally done that many times.

And design isn’t linear. Most chapters in this book are arranged more or less by scale,
and therefore by their approximate order in the design progression: large decisions about

Preface  xxi 

content and scope are made first, followed by navigation, page design, and eventually
the details of interactions with forms and toolbars and such. But you’ll often find your-
self moving back and forth through this progression. Maybe you’ll know very early in
a project how a certain screen should look, and that’s a “fixed point;” you may have to
work backward from there to figure out the right navigational structure. (It’s not ideal, but
things like this do happen in real life.)

Here are some ways you can use these patterns:

Learning
If you don’t have much design experience, a set of patterns can serve as a learning tool.
You may want to read over it to get ideas, or refer back to specific patterns as the need
arises. Just as expanding your vocabulary helps you express ideas in language, expand-
ing your interface design “vocabulary” helps you create more expressive designs.

Examples
Each pattern in this book has at least one example. Some have many; they might be
useful to you as a sourcebook. You may find wisdom in the examples that is missing
in the text of the pattern. If you’re a designer who knows the patterns already, the
examples may be the most useful aspect of the book for you.

Terminology
If you talk to users, engineers, or managers about interface design, or if you write
specifications, then you could use the pattern names as a way of communicating and
discussing ideas. This is another well-known benefit of pattern languages. (The terms
“singleton” and “factory,” for instance, were originally pattern names, but they’re now
in common use among software engineers.)

Comparison of design alternatives
If you initially decided to use Module Tabs to organize material on a page and it’s not
working quite as well as you hoped, you might use these patterns to come up with al-
ternatives, such as Titled Sections or an Accordion. Other sets of “either/or” patterns are
presented in this book, often with reasons to choose one pattern or another. Skilled
designers know that presenting alternative designs to clients frequently leads to a
better choice in the end.

Inspiration
Each pattern description tries to capture the reasons why the pattern works to make
an interface easier or more fun. If you get it, but want to do something a little different
from the examples, you can be creative with your “eyes open.” You could also use the
book to jumpstart your creative process by flipping through it for ideas.

One more word of caution: a catalog of patterns is not a checklist. You cannot measure the
quality of a thing by counting the patterns in it. Each design project has a unique context,
and even if you need to solve a common design problem (such as how to fit too much
content onto a page), a given pattern might be a poor solution within that context. No
reference can substitute for good design judgment. Nor can it substitute for a good design
process, which helps you find and recover from design mistakes.

xxii  Preface

Ultimately, you should be able to leave a reference like this behind. As you become an ex-
perienced designer, you will internalize these ideas to the point that you don’t even notice
you’re using them anymore; the patterns become second nature and a permanent part of
your toolbox.

Audience
If you design user interfaces in any capacity, you might find this book useful. It’s intended
for people who work on:

•	 Desktop applications

•	 Websites

•	 Web applications or “rich internet applications” (RIAs)

•	 Software for mobile devices or other consumer electronics

•	 Turnkey systems like kiosks

•	 Operating systems

Of course, profound differences exist among these different design platforms. However,
I believe they have more in common than we generally think. You’ll see examples from
many different platforms in these patterns, and that’s deliberate—they often use the same
patterns to achieve the same ends.

From what readers said about the previous edition, this book has been more valuable to
less experienced designers than to those who have been designing sites or interfaces for a
while—they know this material already. However, even if you’re just starting out with de-
sign, you should already know the basic “grammar” of UI design, such as available toolkits
and control sets, concepts like drag-and-drop and focus, and the importance of usability
testing and user feedback. If you don’t, some excellent books listed in the References sec-
tion can get you started with the essentials.

Specifically, this book targets the following audiences:

•	 Software developers who need to design the UIs that they build.

•	 Web page designers who are now asked to design web apps or sites with more
interactivity.

•	 New interface designers and usability specialists.

•	 More experienced designers who want to see how other designs solve certain prob-
lems; the examples can serve as a sourcebook for ideas.

•	 Professionals in adjacent fields, such as technical writing, product design, and infor-
mation architecture.

Preface  xxiii 

•	 Managers who want to understand what’s involved in good interface design.

•	 Open source developers and enthusiasts. This isn’t quite “open source design,” but the
idea is to open up interface design best practices for everyone’s benefit.

How This Book Is Organized
The patterns in this book are grouped into thematic chapters, and each chapter has an in-
troduction that briefly covers the concepts those patterns are built upon. I want to empha-
size briefly. Some of these concepts could have entire books written about them. But the
introductions will give you some context; if you already know this stuff, they’ll be review
material, and if not, they’ll tell you what topics you might want to learn more about. The first
set of chapters is applicable to almost any interface you might design, whether it’s a desktop
application, web application, website, hardware device, or whatever you can think of:

•	 Chapter 1, What Users Do, talks about common behavior and usage patterns sup-
ported by good interfaces.

•	 Chapter 2, Organizing the Content, discusses information architecture as it applies to
highly interactive interfaces. It deals with different organizational patterns, recogniz-
able interface types, and “guilds” of patterns (groups of smaller-scale patterns that
work well together to support a certain type of interface).

•	 Chapter 3, Getting Around, discusses navigation. It describes patterns for mov-
ing around an interface—between pages, among windows, and within large virtual
spaces.

•	 Chapter 4, Organizing the Page, describes patterns for the layout and placement of
page elements. It talks about how to communicate meaning simply by putting things
in the right places.

•	 Chapter 5, Lists, enumerates a set of patterns for displaying lists of items, along with
criteria for choosing among them.

•	 Chapter 6, Doing Things, talks about how to present actions and commands; use these
patterns to handle the “verbs” of an interface.

Next comes a set of chapters that deal with specific idioms. It’s fine to read them all, but
real-life projects probably won’t use all of them. Chapters 7 and 8 are the most broadly
applicable, since most modern interfaces use trees, tables, or forms in some fashion.

•	 Chapter 7, Showing Complex Data, contains patterns for trees, tables, charts, and in-
formation graphics in general. It discusses the cognitive aspects of data presentation
and how to use them to communicate knowledge and meaning.

•	 Chapter 8, Getting Input from Users, deals with forms and controls. Along with the
patterns, this chapter has a table that maps data types to various controls that can
represent them.

xxiv  Preface

•	 Chapter 9, Using Social Media, discusses the ways that one might integrate contem-
porary social media into a website or application design. Although designers don’t
always make these choices for a site, they sometimes do, and social media may influ-
ence your design in any case.

•	 Chapter 10, Going Mobile, presents techniques and concepts that designers ought
to know in order to help their designs translate well to a mobile device. Patterns
throughout the book may contain examples from mobile devices, but the patterns in
this chapter are mobile-specific.

Finally, the last chapter comes at the end of the design progression, but it too applies to
almost anything you design.

•	 Chapter 11, Making It Look Good, deals with aesthetics and fit-and-finish. It uses
graphic design principles and patterns to show how (and why) to polish the look-
and-feel of an interface once its behavior is established.

I chose this book’s examples based on many factors. The most important is how well an ex-
ample demonstrates a given pattern or concept, of course, but other considerations include
general design fitness, printability, variety—desktop applications, websites, devices, etc.—and
how well known and accessible these applications might be to readers. As such, the examples
are weighted heavily toward Microsoft and Apple software, certain big-name websites such as
Google and Yahoo! properties, and easy-to-find consumer software and devices. This is not
to say that they always are paragons of good design—they’re not, and I do not mean to slight
the excellent work done by countless designers on lesser-known applications. If you know of
examples that might meet most of these criteria, please suggest them to me.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional in-
formation. You can access this page at:

http://oreilly.com/catalog/9781449379704/
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at:

http://www.oreilly.com

mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface  xxv 

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference books
and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are avail-
able for print, and get exclusive access to manuscripts in development and post feedback
for the authors. Copy and paste code samples, organize your favorites, download chapters,
bookmark key sections, create notes, print out pages, and benefit from tons of other time-
saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other publishers,
sign up for free at http://my.safaribooksonline.com.

Acknowledgments
First of all, I am indebted to my editor, Mary Treseler, who got this project rolling at just
the right time. You knew a second edition was needed, and with the patience of a saint,
you made sure I followed through with it. Thanks also to the rest of the O’Reilly produc-
tion team: Rachel Monaghan, Audrey Doyle, Robert Romano, Ron Bilodeau, and anyone
else I may have inadvertently missed. You all rocked.

The technical reviewers for this edition gave me fantastic feedback. Barbara Ballard, Erin
Malone, Dan Saffer—thanks to you all!

The ideas in this second edition have been cooking for a long time. Both direct and indirect
conversations with other UI designers and pattern writers have helped shape my thinking:
Bill Scott, Luke Wroblewski, Martijn van Welie, Erin Malone, Christian Crumlish, Dan
Saffer, James Reffell, Scott Jenson, and my UX colleagues at Google. I learned a ridiculous
amount from all of you. I’m also grateful to the people who gave me feedback at the vari-
ous and sundry presentations I’ve done for conferences and mini-conferences over the
last few years.

To all who bought or read the first edition: thanks to you too! Without you, there would
have been no second edition.

Finally, I am enormously grateful to Rich, who supported me wholeheartedly throughout
this second-edition project; and to Matthew, who right now is too young to understand
how helpful his sweet hugs actually were. I love you both!

Chapter 1

What Users Do

This book is almost entirely about the look and behavior of applications, web apps, and
interactive devices. But this first chapter is the exception to the rule. No screenshots here;
no layouts, no navigation, no diagrams, no visuals at all.

Why not? After all, that’s probably why you picked up the book in the first place.

It’s because good interface design doesn’t start with pictures. It starts with an understand-
ing of people: what they’re like, why they use a given piece of software, and how they
might interact with it. The more you know about them, and the more you empathize with
them, the more effectively you can design for them. Software, after all, is merely a means
to an end for the people who use it. The better you satisfy those ends, the happier those
users will be.

Each time someone uses an application, or any digital product, he carries on a conver-
sation with the machine. It may be literal, as with a command line or phone menu, or
tacit, like the “conversation” an artist has with her paints and canvas—the give and take
between the craftsperson and the thing being built. With social software, it may even be a
conversation by proxy. Whatever the case, the user interface mediates that conversation,
helping users achieve whatever ends they had in mind.

As the user interface designer, then, you get to script that conversation, or at least define
its terms. And if you’re going to script a conversation, you should understand the human’s
side as well as possible. What are the user’s motives and intentions? What “vocabulary” of
words, icons, and gestures does the user expect to employ? How can the application set
expectations appropriately for the user? How do the user and the machine finally end up
communicating meaning to each other?

There’s a maxim in the field of interface design: “Know thy users, for they are not you!”

So, this chapter will talk about people. It covers a few fundamental ideas briefly in this
introduction, and then discusses some patterns that differ from those in the rest of the
book. They describe human behaviors—as opposed to system behaviors—that the soft-
ware you design may need to support. Software that supports these human behaviors
better helps users achieve their goals.

2  Chapter 1:  What Users Do

A Means to an End
Everyone who uses a tool—software or otherwise—has a reason for using it. For instance:

•	 Finding some fact or object

•	 Learning something

•	 Performing a transaction

•	 Controlling or monitoring something

•	 Creating something

•	 Conversing with other people

•	 Being entertained

Well-known idioms, user behaviors, and design patterns can support each of these ab-
stract goals. User experience designers have learned, for example, how to help people
search through vast amounts of online information for specific facts. They’ve learned how
to present tasks so that it’s easy to walk through them. They’re learning ways to support
the building of documents, illustrations, and code.

The first step in designing an interface is to figure out what its users are really trying to
accomplish. Filling out a form, for example, is almost never a goal in and of itself—people
only do it because they’re trying to buy something online, renew their driver’s license, or
install software. They’re performing some kind of transaction.

Asking the right questions can help you connect user goals to the design process. Users
and clients typically speak to you in terms of desired features and solutions, not of needs
and problems. When a user or client tells you he wants a certain feature, ask why he wants
it—determine his immediate goal. Then to the answer of this question, ask “why” again.
And again. Keep asking until you move well beyond the boundaries of the immediate
design problem.*

Why should you ask these questions if you have clear requirements? Because if you love
designing things, it’s easy to get caught up in an interesting interface design problem.
Maybe you’re good at building forms that ask for just the right information, with the
right controls, all laid out nicely. But the real art of interface design lies in solving the right
problem.

So, don’t get too fond of designing that form. If there’s any way to finish the transaction
without making the user go through that form at all, get rid of it altogether. That gets the
user closer to his goal, with less time and effort spent on his part (and maybe yours, too).

Let’s use the “why” approach to dig a little deeper into some typical design scenarios.

*	 This is the same principle that underlies a well-known technique called root-cause analysis. But root-cause
analysis is a tool for fixing organizational failures; here, we use its “five whys” (more or less) to understand
everyday user behaviors and feature requests.

A Means to an End  3 

•	 Why does a mid-level manager use an email client? Yes, of course—“to read email.”
Why does she read and send email in the first place? To converse with other people.
Of course, other means might achieve the same ends: the phone, a hallway conversa-
tion, a formal document. But apparently, email fills some needs that the other meth-
ods don’t. What are they, and why are they important to her? Privacy? The ability to
archive a conversation? Social convention? What else?

•	 A father goes to an online travel agent, types in the city where his family will be taking
a summer vacation, and tries to find plane ticket prices on various dates. He’s learn-
ing from what he finds, but his goal isn’t just to browse and explore different options.
Ask why. His goal is actually a transaction: to buy plane tickets. Again, he could have
done that at many different websites, or over the phone with a live travel agent. How
is this site better than those other options? Is it faster? Friendlier? More likely to find
a better deal?

•	 A mobile phone user wants a way to search through his contacts list more quickly.
You, as the designer, can come up with some clever ideas to save keystrokes while
searching. But why does he want it? It turns out that he makes a lot of calls while driv-
ing, and he doesn’t want to take his eyes off the road more than he has to—he wants to
make calls while staying safe (to the extent that that’s possible). The ideal case is that
he doesn’t have to look at the phone at all! A better solution is voice dialing: all he has
to do is speak the name, and the phone makes the call for him.

•	 Sometimes goal analysis really isn’t straightforward at all. A snowboarding site might
provide information (for learning), an online store (for transactions), and a set of
Flash movies (for entertainment). Let’s say someone visits the site for a purchase, but
she gets sidetracked into the information on snowboarding tricks—she has switched
goals from accomplishing a transaction to browsing and learning. Maybe she’ll go
back to purchasing something, maybe not. And does the entertainment part of the
site successfully entertain both the 12-year-old and the 35-year-old? Will the 35-year-
old go elsewhere to buy his new board if he doesn’t feel at home there, or does he not
care?

It’s deceptively easy to model users as a single faceless entity—“The User”—walking
through a set of simple use cases, with one task-oriented goal in mind. But that won’t
necessarily reflect your users’ reality.

To do design well, you need to take many “softer” factors into account: gut reactions,
preferences, social context, beliefs, and values. All of these factors could affect the design
of an application or site. Among these softer factors, you may find the critical feature or
design factor that makes your application more appealing and successful.

So, be curious. Specialize in finding out what your users are really like, and what they
really think and feel.

4  Chapter 1:  What Users Do

The Basics of User Research
Empirical discovery is the only really good way to obtain this information. To get a design
started, you’ll need to characterize the kinds of people who will be using your design
(including the softer factors just mentioned), and the best way to do that is to go out and
meet them.

Each user group is unique, of course. The target audience for, say, a new mobile phone app
will differ dramatically from the target audience for a piece of scientific software. Even if
the same person uses both, his expectations for each are different—a researcher using sci-
entific software might tolerate a less-polished interface in exchange for high functionality,
whereas that same person may stop using the mobile app if he finds its UI to be too hard
to use after a few days.

Each user is unique, too. What one person finds difficult, the next one won’t. The trick is
to figure out what’s generally true about your users, which means learning about enough
individual users to separate the quirks from the common behavior patterns.

Specifically, you’ll want to learn:

•	 Their goals in using the software or site

•	 The specific tasks they undertake in pursuit of those goals

•	 The language and words they use to describe what they’re doing

•	 Their skill at using software similar to what you’re designing

•	 Their attitudes toward the kind of thing you’re designing, and how different designs
might affect those attitudes

I can’t tell you what your particular target audience is like. You need to find out what they
might do with the software or site, and how it fits into the broader context of their lives.
Difficult though it may be, try to describe your potential audience in terms of how and
why they might use your software. You might get several distinct answers, representing
distinct user groups; that’s OK. You might be tempted to throw up your hands and say, “I
don’t know who the users are” or “Everyone is a potential user.” But that doesn’t help you
focus your design at all—without a concrete and honest description of those people, your
design will proceed with no grounding in reality.

Unfortunately, this user-discovery phase will consume serious time early in the design
cycle. It’s expensive. But it’s worth it, because you stand a better chance at solving the right
problem—you’ll build the right thing in the first place.

Fortunately, lots of books, courses, and methodologies now exist to help you. Although
this book does not address user research, here are some methods and topics to consider:

The Basics of User Research  5 

Direct observation
Interviews and onsite user visits put you directly into the user’s world. You can ask
users about what their goals are and what tasks they typically do. Usually done “on lo-
cation,” where users would actually use the software (e.g., in a workplace or at home),
interviews can be structured—with a predefined set of questions—or unstructured,
where you probe whatever subject comes up. Interviews give you a lot of flexibility;
you can do many or a few, long or short, formal or informal, on the phone or in person.
These are great opportunities to learn what you don’t know. Ask why. Ask it again.

Case studies
Case studies give you deep, detailed views into a few representative users or groups of
users. You can sometimes use them to explore “extreme” users that push the bound-
aries of what the software can do, especially when the goal is a redesign of existing
software. You can also use them as longitudinal studies—exploring the context of use
over months or even years. Finally, if you’re designing custom software for a single
user or site, you’ll want to learn as much as possible about the actual context of use.

Surveys
Written surveys can collect information from many users. You can actually get statisti-
cally significant numbers of respondents with these. Since there’s no direct human con-
tact, you will miss a lot of extra information—whatever you don’t ask about, you won’t
learn about—but you can get a very clear picture of certain aspects of your target audi-
ence. Careful survey design is essential. If you want reliable numbers instead of a qualita-
tive “feel” for the target audience, you absolutely must write the questions correctly, pick
the survey recipients correctly, and analyze the answers correctly—and that’s a science.

Personas
Personas aren’t a data-gathering method, but they do help you figure out what to do
with your data once you’ve got it. This is a design technique that “models” the target
audiences. For each major user group, you create a fictional person that captures the
most important aspects of the users in that group: what tasks they’re trying to accom-
plish, their ultimate goals, and their experience levels in the subject domain and with
computers in general. Personas can help you stay focused. As your design proceeds,
you can ask yourself questions such as “Would this fictional person really do X? What
would she do instead?”

You might notice that some of these methods and topics, such as interviews and surveys,
sound suspiciously like marketing activities. That’s exactly what they are. Focus groups
can be useful, too (though not so much as the others), and the concept of market seg-
mentation resembles the definition of target audiences used here. In both cases, the whole
point is to understand the audience as best you can.

The difference is that as a designer, you’re trying to understand the people who use the
software. A marketing professional tries to understand those who buy it.

6  Chapter 1:  What Users Do

It’s not easy to understand the real issues that underlie users’ interactions with a system.
Users don’t always have the language or introspective skill to explain what they really need
to accomplish their goals, and it takes a lot of work on your part to ferret out useful design
concepts from what they can tell you—self-reported observations are usually biased in
subtle ways.

Some of these techniques are very formal, and some aren’t. Formal and quantitative meth-
ods are valuable because they’re good science. When applied correctly, they help you see
the world as it actually is, not how you think it is. If you do user research haphazardly,
without accounting for biases such as the self-selection of users, you may end up with
data that doesn’t reflect your actual target audience—and that can only hurt your design
in the long run.

But even if you don’t have time for formal methods, it’s better to just meet a few users
informally than to not do any discovery at all. Talking with users is good for the soul. If
you’re able to empathize with users and imagine those individuals actually using your
design, you’ll produce something much better.

Users’ Motivation to Learn
Before you start the design process, consider your overall approach. Think about how you
might design the interface’s overall interaction style—its personality, if you will.

When you carry on a conversation with someone about a given subject, you adjust what
you say according to your understanding of the other person. You might consider how
much he cares about the subject, how much he already knows about it, how receptive he is
to learning from you, and whether he’s even interested in the conversation in the first place.
If you get any of that wrong, bad things happen—he might feel patronized, uninterested,
impatient, or utterly baffled.

This analogy leads to some obvious design advice. The subject-specific vocabulary you
use in your interface, for instance, should match your users’ level of knowledge; if some
users won’t know that vocabulary, give them a way to learn the unfamiliar terms. If they
don’t know computers very well, don’t make them use sophisticated widgetry or uncommon
interface-design conventions. If their level of interest might be low, respect that, and don’t
ask for too much effort for too little reward.

Some of these concerns permeate the whole interface design in subtle ways. For example,
do your users expect a short, tightly focused exchange about something very specific, or
do they prefer a conversation that’s more of a free-ranging exploration? In other words,
how much openness is there in the interface? Too little, and your users feel trapped and
unsatisfied; too much, and they stand there paralyzed, not knowing what to do next, un-
prepared for that level of interaction.

Users’ Motivation to Learn  7 

Therefore, you need to choose how much freedom your users have to act arbitrarily. At
one end of the scale might be a software installation wizard: the user is carried through
it with no opportunity to use anything other than Next, Previous, or Cancel. It’s tightly
focused and specific, but quite efficient—and satisfying, to the extent that it works and is
quick. At the other end might be an application such as Excel, an “open floorplan” interface
that exposes a huge number of features in one place. At any given time, the user has about
872 things that he can do next, but that’s considered good, because self-directed, skilled
users can do a lot with that interface. Again, it’s satisfying, but for entirely different reasons.

Here’s an even more fundamental question: how much effort are your users willing to
spend to learn your interface?

It’s easy to overestimate. Maybe they’ll use it every day on the job—clearly they’d be moti-
vated to learn it well in that case, but that’s rare. Maybe they’ll use it sometimes, and learn
it only well enough to get by (Satisficing). Maybe they’ll only see it once, for 30 seconds. Be
honest: can you expect most users to become intermediates or experts, or will most users
remain perpetual beginners?

Software designed for intermediate-to-expert users includes:

•	 Photoshop

•	 Dreamweaver

•	 Excel

•	 Code development environments

•	 System-administration tools for web servers

In contrast, here are some things designed for occasional users:

•	 Kiosks in tourist centers or museums

•	 Windows or Mac OS controls for setting desktop backgrounds

•	 Purchase pages for online stores

•	 Installation wizards

•	 Automated teller machines

The differences between the two groups are dramatic. Assumptions about users’ tool
knowledge permeate these interfaces, showing up in their screen-space usage, labeling,
and widget sophistication, and in the places where help is (or isn’t) offered.

The applications in the first group have lots of complex functionality, but they don’t gen-
erally walk the user through tasks step by step. They assume users already know what to
do, and they optimize for efficient operation, not learnability; they tend to be document-
centered or list-driven (with a few being command-line applications). They often have
entire books and courses written about them. Their learning curves are steep.

8  Chapter 1:  What Users Do

The applications in the second group are the opposite: restrained in functionality but
helpful about explaining it along the way. They present simplified interfaces, assuming no
prior knowledge of document- or list-centered application styles (e.g., menu bars, mul-
tiple selection, etc.). Wizards frequently show up, removing attention-focusing responsi-
bility from the user. The key is that users aren’t motivated to work hard at learning these
applications—it’s usually just not worth it!

Now that you’ve seen the extremes, look at the applications in the middle of the continuum:

•	 Microsoft PowerPoint

•	 Email clients

•	 Facebook

•	 Blog-writing tools

The truth is that most applications fall into this middle ground. They need to serve peo-
ple on both ends adequately—to help new users learn the tool (and satisfy their need
for instant gratification), while enabling frequent-user intermediates to get things done
smoothly. Their designers probably knew that people wouldn’t take a three-day course to
learn an email client. Yet the interfaces hold up under repeated usage. People quickly learn
the basics, reach a proficiency level that satisfies them, and don’t bother learning more
until they are motivated to do so for specific purposes.

You may someday find yourself in tension between the two ends of this spectrum.
Naturally you want people to be able to use your design “out of the box,” but you might
also want to support frequent or expert users as much as possible. Find a balance that
works for your situation. Organizational patterns in Chapter 2, such as Multi-Level Help,
can help you serve both constituencies.

The Patterns
Even though individuals are unique, people behave predictably. Designers have been
doing site visits and user observations for years; cognitive scientists and other researchers
have spent many hundreds of hours watching how people do things and how they think
about what they do.

So, when you observe people using your software, or doing whatever activity you want to
support with new software, you can expect them to do certain things. The behavioral pat-
terns that follow are often seen in user observations. Odds are good that you’ll see them
too, especially if you look for them.

(A note for pattern enthusiasts: these patterns aren’t like the others in this book. They
describe human behaviors—not interface design elements—and they’re not prescriptive,
like the patterns in other chapters. Instead of being structured like the other patterns,
these are presented as small essays.)

The Patterns  9 

Again, an interface that supports these patterns well will help users achieve their goals
far more effectively than interfaces that don’t support them. And the patterns are not just
about the interface, either. Sometimes the entire package—interface, underlying architec-
ture, feature choice, documentation, everything—needs to be considered in light of these
behaviors. But as the interface designer or interaction designer, you should think about
these as much as anyone on your team. You might be in a better place than anyone to
advocate for the users.

1.	 Safe Exploration

2.	 Instant Gratification

3.	 Satisficing

4.	 Changes in Midstream

5.	 Deferred Choices

6.	 Incremental Construction

7.	 Habituation

8.	 Microbreaks

9.	 Spatial Memory

10.	 Prospective Memory

11.	 Streamlined Repetition

12.	 Keyboard Only

13.	 Other People’s Advice

14.	 Personal Recommendations

Safe Exploration
“Let me explore without getting lost or getting into trouble.”

When someone feels like she can explore an interface and not suffer dire consequences,
she’s likely to learn more—and feel more positive about it—than someone who doesn’t ex-
plore. Good software allows people to try something unfamiliar, back out, and try some-
thing else, all without stress.

Those “dire consequences” don’t even have to be very bad. Mere annoyance can be enough
to deter someone from trying things out voluntarily. Clicking away pop-up windows, re-
entering data that was mistakenly erased, suddenly muting the volume on one’s laptop
when a website unexpectedly plays loud music—all can be discouraging. When you de-
sign almost any kind of software interface, make many avenues of exploration available
for users to experiment with, without costing the user anything.

10  Chapter 1:  What Users Do

Here are some examples:

•	 A photographer tries out a few image filters in an image-processing application. He
then decides he doesn’t like the results, and clicks Undo a few times to get back to
where he was. Then he tries another filter, and another, each time being able to back
out of what he did. (The pattern named Multi-Level Undo, in Chapter 6, describes how
this works.)

•	 A new visitor to a company’s home page clicks various links just to see what’s there,
trusting that the Back button will always get her back to the main page. No extra
windows or pop ups open, and the Back button keeps working predictably. You can
imagine that if a web app does something different in response to the Back button—
or if an application offers a button that seems like a Back button, but doesn’t behave
quite like it—confusion might ensue. The user can get disoriented while navigating,
and may abandon the app altogether.

Instant Gratification
“I want to accomplish something now, not later.”

People like to see immediate results from the actions they take—it’s human nature. If
someone starts using an application and gets a “success experience” within the first few
seconds, that’s gratifying! He’ll be more likely to keep using it, even if it gets harder later.
He will feel more confident in the application, and more confident in himself, than if it
had taken a while to figure things out.

The need to support instant gratification has many design ramifications. For instance, if
you can predict the first thing a new user is likely to do, you should design the UI to make
that first thing stunningly easy. If the user’s goal is to create something, for instance, then
create a new canvas, put a call to action on it, and place a palette next to it. If the user’s goal
is to accomplish some task, point the way toward a typical starting point.

This also means you shouldn’t hide introductory functionality behind anything that
needs to be read or waited for, such as registrations, long sets of instructions, slow-to-load
screens, advertisements, and so on. These are discouraging because they block users from
finishing that first task quickly.

The Patterns  11 

Satisficing
“This is good enough.

I don’t want to spend more time learning to do it better.”

When people look at a new interface, they don’t read every piece of it methodically and
then decide, “Hmmm, I think this button has the best chance of getting me what I want.”
Instead, a user will rapidly scan the interface, pick whatever he sees first that might get
him what he wants, and try it—even if it might be wrong.

The term satisficing is a combination of satisfying and sufficing. It was coined in 1957 by
the social scientist Herbert Simon, who used it to describe the behavior of people in all
kinds of economic and social situations. People are willing to accept “good enough” in-
stead of “best” if learning all the alternatives might cost time or effort.

Satisficing is actually a very rational behavior, once you appreciate the mental work neces-
sary to “parse” a complicated interface. As Steve Krug points out in his book Don’t Make
Me Think (New Riders), people don’t like to think any more than they have to—it’s work!
But if the interface presents an obvious option or two that the user sees immediately, he’ll
try it. Chances are good that it will be the right choice, and if not, there’s little cost in back-
ing out and trying something else (assuming that the interface supports Safe Exploration).

This means several things for designers:

•	 Use “calls to action” in the interface. Give directions on what to do first: type here,
drag an image here, tap here to begin, and so forth.

•	 Make labels short, plainly worded, and quick to read. (This includes menu items,
buttons, links, and anything else identified by text.) They’ll be scanned and guessed
about; write them so that a user’s first guess about meaning is correct. If he guesses
wrong several times, he’ll be frustrated, and you’ll both be off to a bad start.

•	 Use the layout of the interface to communicate meaning. Chapter 4 explains how to
do so in detail. Users “parse” color and form on sight, and they follow these cues more
efficiently than labels that must be read.

•	 Make it easy to move around the interface, especially for going back to where a wrong
choice might have been made hastily. Provide “escape hatches” (see Chapter 3). On
typical websites, using the Back button is easy, so designing easy forward/backward
navigation is especially important for web apps, installed applications, and mobile
devices.

•	 Keep in mind that a complicated interface imposes a large cognitive cost on new
users. Visual complexity will often tempt nonexperts to satisfice: they look for the
first thing that may work.

12  Chapter 1:  What Users Do

Satisficing is why many users end up with odd habits after they’ve been using a system
for a while. Long ago, a user may have learned Path A to do something, and even though
a later version of the system offers Path B as a better alternative (or maybe it was there
all along), he sees no benefit in learning it—that takes effort, after all—and keeps using the
less-efficient Path A. It’s not necessarily an irrational choice. Breaking old habits and learning
something new takes energy, and a small improvement may not be worth the cost to the user.

Changes in Midstream
“I changed my mind about what I was doing.”

Occasionally, people change what they’re doing while in the middle of doing it. Someone
may walk into a room with the intent of finding a key she had left there, but while she’s there,
she finds a newspaper and starts reading it. Or she may visit Amazon.com to read product
reviews, but ends up buying a book instead. Maybe she’s just sidetracked; maybe the change
is deliberate. Either way, the user’s goal changes while she’s using the interface you designed.

This means designers should provide opportunities for people to do that. Make choices
available. Don’t lock users into a choice-poor environment with no connections to other
pages or functionality unless there’s a good reason to do so. Those reasons do exist. See
the patterns called Wizard (Chapter 2) and Modal Panel (Chapter 3) for examples.

You can also make it easy for someone to start a process, stop in the middle, and come
back to it later to pick up where he left off—a property often called reentrance. For in-
stance, a lawyer may start entering information into a form on an iPad. Then, when a cli-
ent comes into the room, the lawyer turns off the device, with the intent of coming back
to finish the form later. The entered information shouldn’t be lost.

To support reentrance, you can make dialogs and web forms remember values typed pre-
viously, and they don’t usually need to be modal; if they’re not modal, they can be dragged
aside on the screen for later use. Builder-style applications—text editors, code develop-
ment environments, and paint programs—can let a user work on multiple projects at one
time, thus letting her put any number of projects aside while she works on another one.
See the Many Workspaces pattern in Chapter 2 for more information.

Deferred Choices
“I don’t want to answer that now; just let me finish!”

This follows from people’s desire for instant gratification. If you ask a task-focused user
unnecessary questions in the process, he may prefer to skip the questions and come back
to them later.

The Patterns  13 

For example, some web-based bulletin boards have long and complicated procedures
for registering users. Screen names, email addresses, privacy preferences, avatars, self-
descriptions…the list goes on and on. “But I just wanted to post one little thing,” says the
user plaintively. Why not allow him to skip most of the questions, answer the bare mini-
mum, and come back later (if ever) to fill in the rest? Otherwise, he might be there for half
an hour answering essay questions and finding the perfect avatar image.

Another example is creating a new project in a website editor. There are some things you
do have to decide up front, such as the name of the project, but other choices—where on
the server are you going to put this when you’re done? I don’t know yet!—can easily be
deferred.

Sometimes it’s just a matter of not wanting to answer the questions. At other times, the
user may not have enough information to answer yet. What if a music-writing software
package asked you up front for the title, key, and tempo of a new song, before you’ve even
started writing it? (See Apple’s GarageBand for this bit of “good” design.)

The implications for interface design are simple to understand, though not always easy
to implement:

•	 Don’t accost the user with too many upfront choices in the first place.

•	 On the forms that he does have to use, clearly mark the required fields, and don’t
make too many of them required. Let him move on without answering the optional
ones.

•	 Sometimes you can separate the few important questions or options from others that
are less important. Present the short list; hide the long list.

•	 Use Good Defaults (Chapter 8) wherever possible, to give users some reasonable de-
fault answers to start with. But keep in mind that prefilled answers still require the
user to look at them, just in case they need to be changed. They have a small cost, too.

•	 Make it possible for users to return to the deferred fields later, and make them acces-
sible in obvious places. Some dialog boxes show the user a short statement, such as
“You can always change this later by clicking the Edit Project button.” Some websites
store a user’s half-finished form entries or other persistent data, such as shopping
carts with unpurchased items.

•	 If registration is required at a website that provides useful services, users may be far
more likely to register if they’re first allowed to experience the website—drawn in
and engaged—and then asked later about who they are. Some sites let you complete
an entire purchase without registering, then ask you at the end if you want to create a
no-hassle login with the personal information provided in the purchase step.

14  Chapter 1:  What Users Do

Incremental Construction
“Let me change this. That doesn’t look right; let me change it again.

That’s better.”

When people create things, they don’t usually do it all in a precise order. Even an expert
doesn’t start at the beginning, work through the creation process methodically, and come
out with something perfect and finished at the end.

Quite the opposite. Instead, she starts with some small piece of it, works on it, steps back
and looks at it, tests it (if it’s code or some other “runnable” thing), fixes what’s wrong, and
starts to build other parts of it. Or maybe she starts over, if she really doesn’t like it. The
creative process goes in fits and starts. It moves backward as much as forward sometimes,
and it’s often incremental, done in a series of small changes instead of a few big ones.
Sometimes it’s top-down; sometimes it’s bottom-up.

Builder-style interfaces need to support that style of work. Make it easy for users to build
small pieces. Keep the interface responsive to quick changes and saves. Feedback is criti-
cal: constantly show the user what the whole thing looks and behaves like, while the user
works. If the user builds code, simulations, or other executable things, make the “compile”
part of the cycle as short as possible, so the operational feedback feels immediate—leave
little or no delay between the user making changes and seeing the results.

When creative activities are well supported by good tools, they can induce a state of flow
in the user. This is a state of full absorption in the activity, during which time distorts,
other distractions fall away, and the person can remain engaged for hours—the enjoyment
of the activity is its own reward. Artists, athletes, and programmers all know this state.

But bad tools will keep users distracted, guaranteed. If the user has to wait even half a
minute to see the results of the incremental change she just made, her concentration is
broken; flow is disrupted.

If you want to read more about flow, read the books by Mihaly Csikszentmihalyi, who
studied it for years.

Habituation
“That gesture works everywhere else; why doesn’t it work here, too?”

When one uses an interface repeatedly, some frequent physical actions become reflexive:
pressing Ctrl-S to save a document, clicking the Back button to leave a web page, press-
ing Return to close a modal dialog box, using gestures to show and hide windows—even
pressing a car’s brake pedal. The user no longer needs to think consciously about these
actions. They’ve become habitual.

The Patterns  15 

This tendency helps people become expert users of a tool (and helps create a sense of flow,
too). Habituation also measurably improves efficiency, as you can imagine. But it can also
lay traps for the user. If a gesture becomes a habit, and the user tries to use it in a situation
when it doesn’t work—or, worse, does something destructive—the user is caught short.
He suddenly has to think about the tool again (What did I just do? How do I do what I
intended?), and he might have to undo any damage done by the gesture.

For instance, Ctrl-X→Ctrl-S is the “save this file” key sequence used by the Emacs text
editor. Ctrl-A moves the text-entry cursor to the beginning of a line. These keystrokes
become habitual for Emacs users. When a user presses Ctrl-A→Ctrl-X→Ctrl-S in Emacs,
it performs a fairly innocuous pair of operations: move the cursor, save the file.

Now what happens when he types that same habituated sequence in Microsoft Word?

1.	 Ctrl-A: Select all

2.	 Ctrl-X: Cut the selection (the whole document, in this case)

3.	 Ctrl-S: Save the document (whoops)

This is why consistency across applications is important! (And also why a robust “undo”
is useful.)

Just as important, though, is consistency within an application. Some applications are evil
because they establish an expectation that some gesture will do Action X, except in one
special mode where it suddenly does Action Y. Don’t do that. It’s a sure bet that users will
make mistakes, and the more experienced they are—that is, the more habituated they
are—the more likely they are to make that mistake.

Consider this carefully if you’re developing gesture-based interfaces for mobile devices.
Once someone learns how to use his device and gets used to it, he will depend on the
standard gestures working consistently on all applications. Check that gestures in your
design all do the expected things.

This is also why confirmation dialog boxes often don’t work to protect a user against acci-
dental changes. When modal dialog boxes pop up, the user can easily get rid of them just
by clicking OK or pressing Return (if the OK button is the default button). If the dialogs
pop up all the time when the user makes intended changes, such as deleting files, clicking
OK becomes a habituated response. Then, when it actually matters, the dialog box doesn’t
have any effect, because it slips right under the user’s consciousness.

(I’ve seen at least one application that sets up the confirmation dialog box’s buttons ran-
domly from one invocation to another. One actually has to read the buttons to figure out
what to click! This isn’t necessarily the best way to do a confirmation dialog box—in fact,
it’s better to not have them at all under most circumstances—but at least this design side-
steps habituation creatively.)

16  Chapter 1:  What Users Do

Microbreaks
“I’m waiting for the train. Let me do something useful for two minutes.”

People often find themselves with a few minutes of down time. They might need a mental
break while working; they might be in line at a store or sitting in a traffic jam. They might
be bored or impatient. They want to do something constructive or entertaining to pass the
time, knowing they won’t have enough time to get deep into an online activity.

This pattern is especially applicable to mobile devices, because people can easily pull them
out at times such as these.

Here are some typical activities during microbreaks:

•	 Checking email

•	 Reading a News Stream (in Chapter 2) such as Facebook or Twitter

•	 Visiting a news site to find out what’s going on in the world

•	 Watching a short video

•	 Doing a quick web search

•	 Reading an online book

•	 Playing a short game

The key to supporting microbreaks is to make an activity easy and fast to reach—as easy
as turning on the device and selecting an application (or website). Don’t require compli-
cated setup. Don’t take forever to load. And if the user needs to sign in to a service, try to
retain the previous authentication so that she doesn’t have to sign in every time.

For News Stream services, load the freshest content as quickly as possible and show it in
the first screen the user sees. Other activities, such as games, videos, or online books,
should remember where the user left them last time and restore the app or site to its previ-
ous state, without asking (thus supporting reentrance).

If you’re designing an email application, or anything else for which the user needs to do
“housekeeping” to maintain order, give her a way to triage items efficiently. This means
showing enough data per item so that she can identify, for instance, a message’s contents
and sender. You can also give her a chance to “star” or otherwise annotate items of inter-
est, delete items easily, and write short responses and updates.

Long load times deserve another mention. Taking too long to load content is a sure way
to make users give up on your app—especially during microbreaks! Make sure the page is
engineered so that readable, useful content loads first, and with very little delay.

The Patterns  17 

Spatial Memory
“I swear that button was here a minute ago. Where did it go?”

When people manipulate objects and documents, they often find them again later by
remembering where they are, not what they’re named.

Take the Windows, Mac, or Linux desktop. Many people use the desktop background as a
place to put documents, frequently used applications, and other such things. It turns out
that people tend to use spatial memory to find things on the desktop, and it’s very effec-
tive. People devise their own groupings, for instance, or recall that “this document was
at the top right over by such-and-such.” (Naturally, there are real-world equivalents, too.
Many people’s desks are “organized chaos,” an apparent mess in which the office owner
can find anything instantly. But heaven forbid that someone should clean it up for him.)

Many applications put their dialog buttons—OK, Cancel, and so on—in predictable plac-
es, partly because spatial memory for them is so strong. In complex applications, people
may also find things by remembering where they are relative to other things: tools on
toolbars, objects in hierarchies, and so forth. Therefore, you should use patterns such as
Responsive Disclosure (Chapter 4) carefully. Adding items to blank spaces in an interface
doesn’t cause problems, but rearranging existing controls can disrupt spatial memory and
make things harder to find. It depends. Try it out on your users if you’re not sure.

Along with habituation, which is closely related, spatial memory is another reason why
consistency across and within a platform’s applications is good. People may expect to
find similar functionality in similar places. See the Sign-in Tools pattern (Chapter 3) for
an example.

Spatial memory explains why it’s good to provide user-arranged areas for storing docu-
ments and objects, such as the aforementioned desktop. Such things aren’t always practi-
cal, especially with large numbers of objects, but it works quite well with small numbers.
When people arrange things themselves, they’re likely to remember where they put them.
(Just don’t rearrange it for them unless they ask!) The Movable Panels pattern in Chapter 4
describes one particular way to do this.

Also, this is why changing menus dynamically can sometimes backfire. People get used to
seeing certain items on the tops and bottoms of menus. Rearranging or compacting menu
items “helpfully” can work against habituation and lead to user errors. So can changing
navigation menus on web pages. Try to keep menu items in the same place, and in the
same order, on all subpages in a site.

Incidentally, the tops and bottoms of lists and menus are special locations, cognitively
speaking. People notice and remember them more than items in the middle of a list. The
first and last items are perhaps the worst ones to change out from under the user.

18  Chapter 1:  What Users Do

Prospective Memory
“I’m putting this here to remind myself to deal with it later.”

Prospective memory is a well-known phenomenon in psychology that doesn’t seem to
have gained much traction yet in interface design. But I think it should.

We engage in prospective memory when we plan to do something in the future, and we
arrange some way of reminding ourselves to do it. For example, if you need to bring a
book to work the next day, you might put it on a table beside the front door the night
before. If you need to respond to someone’s email later (just not right now!), you might
leave that email on your screen as a physical reminder. Or if you tend to miss meetings,
you might arrange for Outlook or your mobile device to ring an alarm tone five minutes
before each meeting.

Basically, this is something almost everyone does. It’s a part of how we cope with our
complicated, highly scheduled, multitasked lives: we use knowledge “in the world” to aid
our own imperfect memories. We need to be able to do it well.

Some software does support prospective remembering. Outlook and most mobile plat-
forms, as mentioned earlier, implement it directly and actively; they have calendars, and
they sound alarms. But what else can you use for prospective memory?

•	 Notes to oneself, like virtual “sticky notes”

•	 Windows left on-screen

•	 Annotations put directly into documents (such as “Finish me!”)

•	 Browser bookmarks, for websites to be viewed later

•	 Documents stored on the desktop, rather than in the usual places in the filesystem

•	 Email kept in an inbox (and maybe flagged) instead of filed away

People use all kinds of artifacts to support passive prospective remembering. But notice
that almost none of the techniques in the preceding list were designed with that in mind!
What they were designed for is flexibility—and a laissez-faire attitude toward how users
organize their stuff. A good email client lets you create folders with any names you want,
and it doesn’t care what you do with messages in your inbox. Text editors don’t care what
you type, or what giant bold magenta text means to you; code editors don’t care that you
have a “Finish this” comment in a method header. Browsers don’t care why you keep
certain bookmarks around.

In many cases, that kind of hands-off flexibility is all you really need. Give people the tools
to create their own reminder systems. Just don’t try to design a system that’s too smart for
its own good. For instance, don’t assume that just because a window’s been idle for a while,
that no one’s using it and it should be closed. In general, don’t “helpfully” clean up files or

The Patterns  19 

objects that the system may think are useless; someone may be leaving them around for
a reason. Also, don’t organize or sort things automatically unless the user asks the system
to do so.

As a designer, is there anything positive you can do for prospective memory? If someone
leaves a form half-finished and closes it temporarily, you could retain the data in it for
the next time—it will help remind the user where she left off. (See the Deferred Choices
pattern.) Similarly, many applications recall the last few objects or documents they ed-
ited. You could offer bookmark-like lists of “objects of interest”—both past and future—
and make those lists easily available for reading and editing. You can implement Many
Workspaces, which lets users leave unfinished pages open while they work on something
else.

Here’s a bigger challenge: if the user starts tasks and leaves them without finishing them,
think about how to leave some artifacts around, other than open windows, that identify
the unfinished tasks. Another idea: how might a user gather reminders from different
sources (email, documents, calendars, etc.) into one place? Be creative!

Streamlined Repetition
“I have to repeat this how many times?”

In many kinds of applications, users sometimes find themselves having to perform the
same operation over and over again. The easier it is for them, the better. If you can help
reduce that operation down to one keystroke or click per repetition—or, better, just a few
keystrokes or clicks for all repetitions—you will spare users much tedium.

Find and Replace dialog boxes, often found in text editors (Word, email composers, etc.),
are one good adaptation to this behavior. In these dialog boxes, the user types the old
phrase and the new phrase. Then it takes only one Replace button click per occurrence in
the whole document. And that’s only if the user wants to see or veto each replacement—if
she’s confident that she really should replace all occurrences, she can click the Replace All
button; one gesture does the whole job.

Here’s a more general example. Photoshop lets you record “actions” when you want to
perform some arbitrary sequence of actions with a single click. If you want to resize, crop,
brighten, and save 20 images, you can record those four steps as they’re done to the first
image, and then click that action’s Play button for each of the remaining 19. See the Macros
pattern in Chapter 6 for more information.

Scripting environments are even more general. Unix and its variants allow you to script
anything you can type into a shell. You can recall and execute single commands, even
long ones, with a Ctrl-P and Return. You can take any set of commands you issue to the
command line, put them in a for loop, and execute them by pressing the Return key once.

20  Chapter 1:  What Users Do

Or you can put them in a shell script (or in a for loop in a shell script) and execute them as
a single command. Scripting is very powerful, and when complex, it becomes full-fledged
programming.

Other variants include copy-and-paste capability (preventing the need to retype the same
thing in a million places), user-defined “shortcuts” to applications on operating-system
desktops (preventing the need to find those applications’ directories in the filesystem),
browser bookmarks (so users don’t have to type URLs), and even keyboard shortcuts.

Direct observation of users can help you figure out just what kinds of repetitive tasks you
need to support. Users won’t always tell you outright. They may not even be aware that
they’re doing repetitive things that could be streamlined with the right tools—they may
have been doing it so long that they don’t even notice anymore. By watching them work,
you may see what they don’t see.

In any case, the idea is to offer users ways to streamline the repetitive tasks that could
otherwise be time-consuming, tedious, and error-prone.

Keyboard Only
“Please don’t make me use the mouse.”

Some people have real physical trouble using a mouse. Others prefer not to keep switch-
ing between the mouse and keyboard because that takes time and effort—they’d rather
keep their hands on the keyboard at all times. Still others can’t see the screen, and their
assistive technologies often interact with the software using just the keyboard API.

For the sakes of these users, some applications are designed to be “driven” entirely via the
keyboard. They’re usually mouse-driven too, but there is no operation that must be done
with only the mouse—keyboard-only users aren’t shut out of any functionality.

Several standard techniques exist for keyboard-only usage:

•	 You can define keyboard shortcuts, accelerators, and mnemonics for operations
reachable via application menu bars, such as Ctrl-S for Save. See your platform style
guide for the standard ones.

•	 Selection from lists, even multiple selection, is usually possible using arrow keys in
combination with modifiers (such as the Shift key), though this depends on which
component set you use.

•	 The Tab key typically moves the keyboard focus—the control that gets keyboard en-
tries at the moment—from one control to the next, and Shift-Tab moves backward.
This is sometimes called tab traversal. Many users expect it to work on form-style
interfaces.

The Patterns  21 

•	 Most standard controls, even radio buttons and combo boxes, let users change their
values from the keyboard by using arrow keys, the Return key, or the space bar.

•	 Dialog boxes and web pages often have a “default button”—a button representing
an action that says “I’m done with this task now.” On web pages, it’s often Submit or
Done; on dialog boxes, OK or Cancel. When users press the Return key on this page
or dialog box, that’s the operation that occurs. Then it moves the user to the next page
or returns him to the previous window.

There are more techniques. Forms, control panels, and standard web pages are fairly easy
to drive from the keyboard. Graphic editors, and anything else that’s mostly spatial, are
much harder, though not impossible.

Keyboard-only usage is particularly important for data-entry applications. In these,
speed of data entry is critical, and users can’t afford to move their hands off the keyboard
to the mouse every time they want to move from one field to another or even one page
to another. (In fact, many of these forms don’t even require users to press the Tab key to
traverse between controls; it’s done automatically.)

Other People’s Advice
“What did everyone else say about this?”

People are social. As strong as our opinions may sometimes be, we tend to be influenced
by what our peers think.

Witness the spectacular growth of online “user comments”: Amazon for books (and every-
thing else), IMDb for movies, Flickr for photographs, and countless retailers who offer
space for user-submitted product reviews. Auction sites such as eBay formalize user opin-
ions into actual prices. Blogs offer unlimited soapbox space for people to opine about and
discuss anything they want, from products to programming to politics.

The advice of peers, whether direct or indirect, influences people’s choices when they de-
cide any number of things. Finding things online, performing transactions (Should I buy
this product?), playing games (What have other players done here?), and even building
things—people can be more effective when aided by others. If not, they might at least be
happier with the outcome.

Here’s a subtler example. Programmers use the MATLAB application to do scientific and
mathematical tasks. Every few months, the company that makes MATLAB holds a public
programming contest; for a few days, every contestant writes the best MATLAB code he
can to solve a difficult science problem. The fastest, most accurate code wins. The catch is
that every player can see everyone else’s code—and copying is encouraged! The “advice”
in this case is indirect, taking the form of shared code, but it’s quite influential. In the end,

22  Chapter 1:  What Users Do

the winning program is never truly original, but it’s undoubtedly better code than any solo
effort would have been. (In many respects, this is a microcosm of open source software
development, which is driven by a powerful set of social dynamics.)

Not all applications and software systems can accommodate a social component, and not
all should try. But consider whether it might enhance the user experience to do so. And
you could get more creative than just tacking a web-based bulletin board onto an ordinary
site—how can you persuade users to take part constructively? How can you integrate it
into the typical user’s workflow?

If the task is creative, maybe you can encourage people to post their creations for the pub-
lic to view. If the goal is to find some fact or object, perhaps you can make it easy for users
to see what other people found in similar searches.

Of the patterns in this book, Multi-Level Help (Chapter 2) most directly addresses this
idea; an online support community is a valuable part of a complete help system for some
applications.

Personal Recommendations
“My friend told me to read this, so it must be pretty good.”

This pattern operates on the same principle as the previous one—we are strongly influ-
enced by our peers. So much so, in fact, that we are much more likely to view the articles
and videos that someone refers us to than those we find in some other way. The personal
touch makes a big difference when we decide what to read online.

Therefore, support person-to-person sharing of content. Let people send a URL (or
the content itself) to friends and family, either via email or via a social network such as
Facebook or Buzz.

This implies a host of mechanisms that need to be used or designed in. First, what exactly
are users sharing? If the content doesn’t already have a URL, see if one can be constructed
for it. (The Deep-linked State pattern in Chapter 3 talks about this.) This URL should di-
rect the recipient to a page with the same content that the sender was seeing, to avoid
confusion.

Second, whom will they share it with? Let users connect to a social network, or give them
a way to send email.

Third, what implications does this reference have? If a user sends email to a few “close ties,”
along with a personal message—one the user typed, not an automatic “personal message!—
that can potentially carry a very high recommendation. After all, someone cared enough
to think about you and take time to write a note. The specialness declines as the sender
CCs more and more email addresses, though.

The Patterns  23 

When a user posts a link to her Facebook or Twitter stream, that carries other implica-
tions: “I thought this was cool, and it represents something about who I am.” Followers
are still likely to read these links, especially if they trust that the poster has good taste.
Furthermore, followers may repost or retweet it themselves, as will their followers, ad
infinitum. This is how memes start, content goes viral, and the social web rolls on.

Chapter 2

Organizing the Content: Information
Architecture and Application Structure

At this point, you know what your users want out of your application or site. You’re target-
ing a chosen platform: the Web, the desktop, a mobile device, or some combination. You
know which idiom or interface type to use—a form, an e-commerce site, an image viewer,
or something else—or you may realize that you need to combine several of them. If you’re
really on the ball, you’ve written down some typical scenarios that describe how people
might use high-level elements of the application to accomplish their goals. You have a
clear idea of what value this application adds to people’s lives.

Now what?

You could start making sketches of the interface. Many visual thinkers do that at this stage.
If you’re the kind of person who likes to think visually and needs to play with sketches
while working out the broad strokes of the design, go for it.

But if you’re not a visual thinker by nature (and sometimes even if you are), hold off on
the interface sketches. They might lock your thinking into the first visual designs you put
on paper. You need to stay flexible and creative for a little while, until you work out the
overall organization of the application.

It can be helpful to think about an application in terms of its underlying data and tasks.
What objects are being shown to the users? How are they categorized and ordered? What
do users need to do with them? And now that you’re thinking abstractly about them, how
many ways can you design a presentation of those things and tasks?

These lines of inquiry may help you think more creatively about the interface you’re
designing.

Information architecture (IA) is the art of organizing an information space. It encompasses
many things: presenting, searching, browsing, labeling, categorizing, sorting, manipulat-
ing, and strategically hiding information. Especially if you’re working with a new product,
this is where you should start.

26  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

The Big Picture
Let’s look at the very highest level of your application first. From the designer’s perspec-
tive, your site or application probably serves several functions: a software service—maybe
several services—sharing information, selling a product, branding, social communica-
tion, or any number of other goals. Your home page or opening screen may need to con-
vey all of these. Via text and imagery, users should be directed to the part of your site or
app that accomplishes their purposes.

At this level, you’ll make decisions about the whole package. What interaction model will
it use? The desktop metaphor? The simpler model of a traditional website? Or a richly in-
teractive site that splits the difference? Is it a self-contained device such as a mobile phone
or digital video recorder, for which you must design the interactions from scratch? The
interaction model establishes consistency throughout the artifact, and it determines how
users move through and among the different pieces of functionality. I won’t go into more
detail at this level, because almost all of the patterns in this book apply at smaller scales.

Now let’s look at a smaller unit within an application or site: pages that serve single im-
portant functions. In an application, this might be a main screen or a major interactive
tool; in a richly interactive website, it might be a single page, such as Gmail’s main screen;
in a more static website, it might be a group of pages devoted to one process or function.

Any such page will primarily do one of these things:

1.	 Show one single thing, such as a map, book, video, or game

2.	 Show a list or set of things

3.	 Provide tools to create a thing

4.	 Facilitate a task

Most apps and sites do some combination of these things, of course. A website might
show a feature article (1), a list of additional articles (2), with a wiki area for members to
create pages (3), and a registration form for new members (4). That’s fine. Each of these
parts of the site should be designed using patterns and tools to fit that particular organiz-
ing principle.

This list mirrors some of the work done by Theresa Neil with application structures in the
context of rich Internet applications (RIAs). She defines three types of structures based on
the user’s primary goal: information, process, and creation.*

This list gives us a framework within which to fit the idioms and patterns we’ll talk about
in this and other chapters.

*	 “Rich Internet Screen Design,” in UX Magazine: http://www.uxmag.com/design/rich-internet-application-
screen-design.

http://www.uxmag.com/design/rich-internet-application-screen-design
http://www.uxmag.com/design/rich-internet-application-screen-design

The Big Picture  27 

Show One Single Thing
Is this really what your page does? The whole point of the page’s design is to show or play a
single piece of content, with no list of other pieces that users could also see, no comments,
and no table of contents or anything like that?

Lucky you!

All you really need, then, is to manage the user’s interaction with this one thing. The
IA is probably straightforward. There might be small-scale tools clustered around the
content—scrollers and sliders, sign-in box, global navigation, headers and footers, and
so forth—but they are minor and easily designed. Your design might take one of these
shapes:

•	 A long, vertically scrolled page of flowed text (articles, books, and similar long-form
content).

•	 A zoomable interface for very large, fine-grained artifacts, such as maps, images,
or information graphics. Map sites such as Google Maps provide some well-known
examples.

•	 The “media player” idiom, including video and audio players.

As you design this interface, consider the following patterns and techniques to support
the design:

•	 Alternative Views, to show the content in more than one way.

•	 Many Workspaces, in case people want to see more than one place, state, or document
at one time.

•	 Deep-linked State, in Chapter 3. With this, a user can save a certain place or state
within the content so that he can come back to it later or send someone else a URL.

•	 Sharing Widget and other social patterns, in Chapter 9.

•	 Some of the mobile patterns described in Chapter 10, if one of your design goals is to
deliver the content on mobile devices.

Show a List of Things
This is what most of the world’s digital artifacts seem to do. Lists are everywhere! The
digital world has converged on many common idioms for showing lists, most of which
are familiar to you—simple text lists, menus, grids of images, search results, lists of email
messages or other communications, tables, trees. There are more, of course.

Lists present rich challenges in information architecture. How long is the list? Is it flat or
hierarchical, and if it is a hierarchy, what kind? How is it ordered, and can the user change
that ordering dynamically? Should it be filtered or searched? What information or opera-
tions are associated with each list item, and when and how should they be shown?

28  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Because lists are so common, a solid grasp of the different ways to present them can
benefit any designer. It’s the same theme again—by learning and formalizing these tech-
niques, you can expand your own thinking about how to present content in different and
interesting ways.

A few patterns for designing an interface around a list are described in this chapter (others
are in Chapter 5). You can build either an entire app or site, or a small piece of a larger arti-
fact, around one of these patterns. They set up a structure that other display techniques—
text lists, thumbnail lists, and so on—can fit into. Other top-level organizations not listed
here might include calendars, full-page menus, and search results.

•	 Feature, Search, and Browse is the pattern followed by countless websites that show
products and written content. Searching and browsing provide two ways for users to
find items of interest, while the front page features one item to attract interest.

•	 Blogs, news sites, email readers, and social sites such as Twitter all use the News Stream
pattern to list their content, with the most recent updates at the top.

•	 Picture Manager is a well-defined interface type for handling photos and other picto-
rial documents. It can accommodate hierarchies and flat lists, tools to arrange and
reorder documents, tools to operate directly on pictures, and so on.

Once you’ve chosen an overall design for the interface, you might look at other patterns
and techniques for displaying lists. These fit into the patterns mentioned earlier; for
instance, a Picture Manager might use a Thumbnail Grid, a Pagination, or both to show a
list of photos—all within a Two-Panel Selector framework. See Chapter 5 for a thorough
discussion.

Provide Tools to Create a Thing
Builders and editors are the great dynastic families of the software world. Microsoft
Word, Excel, PowerPoint, and other Office applications, in addition to Adobe Photoshop,
Illustrator, In Design, Dreamweaver, and other tools that support designers are all in this
category. So are the tools that support software engineers, such as the various code editors
and integrated development environments. These have long histories, large user bases,
and very well established interaction styles, honed over many years.

Most people are familiar with the idioms used by these tools: text editors, code editors,
image editors, editors that create vector graphics, and spreadsheets.

Chapter 8 of the previous edition of this book discusses how to design different aspects of
these tools. But at the level of application structure or IA, the following patterns are often
found:

•	 Canvas Plus Palette describes most of these applications. This highly recognizable,
well-established pattern for visual editors sets user expectations very strongly.

•	 Almost all applications of this type provide Many Workspaces—usually windows con-
taining different documents, which enable users to work on them in parallel.

The Patterns  29 

•	 Alternative Views let users see one document or workspace through different lenses, to
view various aspects of the thing they’re creating.

•	 “Blank Slate Invitation” is named and written about in Designing Web Interfaces
(http://oreilly.com/catalog/9780596516253/) by Bill Scott and Theresa Neil (O’Reilly),
and is a profoundly useful pattern for builders and editors. It is closely related to the
Input Hints pattern in Chapter 8.

Facilitate a Single Task
Maybe your interface’s job isn’t to show a list of anything or create anything, but simply to
get a job done. Signing in, registering, posting, printing, uploading, purchasing, changing
a setting—all such tasks fall into this category.

Forms do a lot of work here. Chapter 8 talks about forms at length and lists many controls
and patterns to support effective forms. Chapter 6 defines another useful set of patterns
that concentrate more on “verbs” than “nouns.”

Not much IA needs to be done if the user can do the necessary work in a small, contained
area, such as a sign-in box. But when the task gets more complicated than that—if it’s long,
or branched, or has too many possibilities—part of your job is to work out how the task
is structured.

•	 Much of the time, you’ll want to break the task down into smaller steps or groups of
steps. For these, a Wizard might work well for users who need to be walked through
the task.

•	 A Settings Editor is a very common type of interface that gives users a way to change
the settings or preferences of something—an application, a document, a product, and
so on. This isn’t a step-by-step task at all. Here, your job is to give users open access
to a wide variety of choices and switches and let them change only what they need,
when they need it, knowing that they will skip around.

The Patterns
Several of the patterns in this chapter are large-scale, defining the interactions for large
sections of applications or sites (or sometimes the entire thing). Some of these, including
Picture Manager, Canvas Plus Palette, and Feature, Search, and Browse, are really clusters of
other patterns that support each other in well-defined ways—they are “guilds” of smaller-
scale patterns.

1.	 Feature, Search, and Browse

2.	 News Stream

3.	 Picture Manager

4.	 Dashboard

http://oreilly.com/catalog/9780596516253/

30  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

5.	 Canvas Plus Palette

6.	 Wizard

7.	 Settings Editor

The last three patterns are more “meta,” in the sense that they can apply to the other
patterns in the preceding list. For instance, almost any content, document, or list can be
shown in more than one way, and the ability to switch among those Alternative Views can
empower users.

8.	 Alternative Views

Likewise, a user may want to instantiate the interface more than once, to maintain several
trains of thought simultaneously—consider the tabs in a browser window, all showing dif-
ferent and unrelated websites. Offer the Many Workspaces pattern to these users.

9.	 Many Workspaces

Many patterns, here and elsewhere in the book, contribute in varying degrees to the learn-
ability of an interface. Multi-Level Help sets out ways to integrate help into the application,
thus supporting learnability for a broad number of users and situations.

10.	 Multi-Level Help

Feature, Search, and Browse

SearchFeature

Browse

Figure 2-1. EMS

The Patterns  31 

What

Put three elements on the main page of the site or app: a featured article or product, a
search box, and a list of items or categories that can be browsed.

Use when

Your site offers users long lists of items—articles, products, videos, and so on—that can be
browsed and searched. You want to engage incoming users immediately by giving them
something interesting to read or watch.

Why

These three elements are found together on many, many successful sites. Once you are
attuned to them, you can find them just about everywhere.

Searching and browsing go hand in hand as two ways to find desired items: some people
will know what they’re looking for and zero in on the search box, while others will do
more open-ended browsing through the lists and categories you show them.

Featured items are how you “hook” the user. They’re far more interesting than just cat-
egory lists and search boxes, especially when you use appealing images and headlines.
A user who lands on your page now has something to read or experiment with, without
doing any additional work at all—and he may find it more interesting than whatever he
originally came for.

How

Place a search box in a prominent location, such as an upper corner, or in a banner across
the middle top of the site. Demarcate it well from the rest of the site—use whitespace to
set it off, and use a different surrounding background color if necessary.

Try to eliminate all other text fields above the fold (except the sign-in box, if you have
one), to make sure users don’t confuse those with the search box. People looking for a
search box tend to zero in on the first text field they come across. Make sure they find the
right one!

Set aside Center Stage (see Chapter 4) for the featured article, product, or video. Very near
it, and still above the fold, place an area for browsing the rest of the site’s content. Most
sites show a list of topics or product categories. These might be links to pages devoted to
those categories. Or they might change the current page’s content, replacing the feature
with a list of items in that category; see the Two-Panel Selector pattern in Chapter 5.

If the category labels open in place to show subcategories, the list behaves like a tree. Some
sites, such as Amazon, turn the category labels into menus: when the pointer rolls over the
label, a menu of subcategories appears.

32  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Choose the features well. Features are a good way to sell items, advertise specials, and call
attention to breaking news. However, they also define what your site is about. The items
you choose to feature say a lot about the site’s values. Features that talk about altruistic or
charitable efforts have a very different appeal from those that advertise specific products.
As always, know your users. What will they want to know about? What will capture their
attention and hold them at your site?

As the user browses through categories and subcategories, help him “stay found” with the
Breadcrumbs pattern (Chapter 3).

Examples

This pattern applies well to websites such as news outlets (CNET, Figure 2-2), publish-
ers (Lulu), knowledge bases (About.com, Figure 2-3), and, of course, e-commerce sites
(Amazon, Figure 2-4; and EMS, at the top of the pattern in Figure 2-1).

Figure 2-2. CNET

The Patterns  33 

Figure 2-3. About.com

Figure 2-4. Amazon

34  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

News Stream

Figure 2-5. Twitter

What

Show time-sensitive items in a reverse chronological list, with the latest items at the top.
Update it dynamically, and combine the items from different sources or people into one
single stream.

Use when

Your site or app uses one or more communication channels, such as blogs, email, social
site updates, or news sites, to deliver timely content to users.

This channel may be personal—a user “owns” it, like an email client or Facebook friends
list—or public, such as a website or public Twitter stream.

Why

People can keep up with a news stream easily, since the latest items reliably appear on top
with no effort on the part of the user. They can check in often and be assured of seeing
what they need to see.

The Patterns  35 

People go to many sites or apps each day to keep up with their friends’ activities, engage
in conversations, or follow topics or blogs of interest. When multiple “news” sources can
be blended in one place, it’s easier to keep track of it all.

This pattern supports the Microbreaks behavior pattern in Chapter 1. A glance at a News
Stream application can give a user lots of useful information (or entertainment) with very
little time or effort.

From the perspective of a publisher, such as a website, having a News Box (Chapter 9)
or the equivalent on your main page lets visitors see what’s new and noteworthy at your
organization. Large organizations in particular may have many initiatives going on that
would interest visitors: new products, blog entries, videos, news articles, charity work, and
other content.

How

List incoming items in reverse chronological order. If the technology permits, “push” new
items onto the top of the list without waiting for the user to request an update, but offer a
way for the user to get an immediate update or refresh anyway.

Very busy streams can be split up into manageable substreams by topic, sender, source,
search terms, or other factors—you could let the user choose which one(s) to show.
Services such as Facebook, FriendFeed, Twitter, and some RSS readers show clickable
lists of these substreams to the left or right of the incoming content (thus implementing
the Two-Panel Selector pattern). Others, such as Tweetdeck, use Many Workspaces to show
multiple parallel panels of incoming content.

Information shown with each item might include:

What
For short micro-updates, show the whole thing. Otherwise, show a title, a teaser that’s
a few words or sentences long, and a thumbnail picture if one is available.

Who
This might be the person who wrote an update, the blog where an article was posted,
the author of said article, or the sender of an email. Actual person names humanize
the interface, but balance this against recognition and authoritativeness—the names
of news outlets, blogs, companies, and so forth are important, too. Use both if that
makes sense.

When
Give a date or timestamp; consider using relative times, such as “Yesterday” and
“Eleven minutes ago.”

Where
If an item’s source is a website, link to that website. If it comes from one of your or-
ganization’s blogs, link to that. (But here’s another interpretation of “where”: can you
get geolocation data about the item, and show it on a map?)

36  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

When there’s more to an item than can be shown easily in the list display, show a “More”
link or button. You might design a way to show the entire contents of an item within
the News Stream window. The News Stream is a list, so you can choose among Two-Panel
Selector, One-Window Drilldown, and List Inlay. Examples abound of each model.

Give the user ways to respond immediately to incoming items. Stars, thumbs-up, liking,
and favoriting are available in some systems—these all provide low-effort feedback and
“handshaking” among people who don’t have time to write out long replies. But allow
those long replies to be written, too! By placing controls and text fields immediately next
to an item in a News Stream, you encourage responsiveness and interaction. This is usually
a good thing in social systems.

Sharing of items, either privately via email or semipublicly via a provided social service, is
also common in these interfaces. See the Sharing Widget pattern in Chapter 9.

News Stream designs for mobile devices are fairly straightforward as of this writing. Almost
all of them devote the full screen to a single list—often a Thumbnail-and-Text List (Chapter
10) with richly formatted text—and users can drill down to an item by simply tapping or
clicking it in the list.

Many News Stream services, including Twitter and Facebook, use the Infinite List pattern
(see Chapter 10) for both their mobile and full-screen designs. This pattern lets users
load a page or two of the most recent updates, and gives the option of loading more to go
“backward in time.”

Some resources use the term activity stream for a very closely related concept: the time-
ordered stream of actions (usually social actions) performed by a single entity such as an
individual, system, or organization. This is a useful concept, and it doesn’t really conflict
with the News Stream pattern, which talks about the stream of activities that are of interest
to an individual or group of users, not generated by them. News Streams will usually have
multiple diverse sources.

Examples

Digg (Figure 2-6) and Google News (Figure 2-7) are both public News Streams. Their
purposes and designs are very different, but they share some of the features talked about
in this pattern. Digg shows all incoming items in one large list; Google News splits them

The Patterns  37 

into topics, within which the most recent news articles are shown first. (Drilling down
into the topic shows a page with a single list.) Both show comparable item information:
title, teaser, linked source, and a relative timestamp. They use human names: Digg shows
the submitter’s name, while Google News shows the article author’s name. And on both
sites, you can mark items of interest—with a “digg” in one, a star in the other—and share
them via email.

Figure 2-6. Digg

38  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-7. Google News

The previous two examples show public News Streams; the next two show personal News
Streams.

Social networking services, news aggregators, and private communications (such as
email) provide plenty of examples of personal News Streams. In Figures 2-8 and 2-9 we see
Facebook and Google Reader, which is an RSS-based aggregator. They both use a single
reverse chronological list of items, each of which shows a linked source, title and teaser
(when appropriate), author name, and relative timestamp. Users can “like” items, share
them, and follow links to read more.

But note the differences, too. Google Reader lets the user split a potentially huge com-
bined stream into substreams, based on source and topic; these are displayed in a select-
able tree list on the left, thus making the window a Two-Panel Selector. Facebook doesn’t
give the user this option by default, as of this writing. Instead, it automatically (and un-
predictably) switches between a filtered “Top Stories” view, and a “Most Recent” view that
shows everything. However, Facebook excels at the immediate response. Posting a short
comment to a Facebook entry is almost as easy as thinking about it.

The Patterns  39 

Figure 2-8. Facebook

Figure 2-9. Google Reader

40  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Picture Manager

Figure 2-10. Two views of iPhoto

What

Use thumbnails, item views, and a browsing interface to create a familiar structure for
managing photos, videos, and other pictorial items.

Use when

People use your software to work with lists or collections of pictorial things: photos, draw-
ings, video clips, and so on. The list might be in a web page, or in an application, or both.
It might allow editing by the owner of the content, or it might simply show the content to
the public for browsing, viewing, and comments.

Why

This is a distinct style of application that many people recognize. It is also a guild of patterns—
a set of patterns linked together and supporting each other in predictable ways. Once
someone sees a Thumbnail Grid of images or videos in the right context, she knows what to
expect: browse, click to view, set up slideshows or playlists, and so on.

Patterns and other components that often play parts in this guild include:

•	 Thumbnail Grid

•	 One-Window Drilldown

•	 Two-Panel Selector

•	 Pyramid

•	 Tabs and Collapsible Panels

•	 Button Groups

•	 Trees or outlines

•	 Keyboard Only

•	 Sharing Widget

•	 Search box

•	 Social comments and discussion

The Patterns  41 

How

Set up two principal views: a Thumbnail Grid of the items in the list, and a large view of a
single item. Users will go back and forth between these. Design a browsing interface and
associate it with the Thumbnail Grid to let users explore a large collection easily.

The Thumbnail Grid
Use this pattern to show a sequence of items. Many Picture Managers show a small amount
of metadata with each item, such as its filename or author, but do this with care, as it clut-
ters the interface. You might offer a control to adjust the size of the thumbnails. There may
also be a way to sort the items by different criteria, such as date, label, or rating, or to filter
it and show only the starred items (for instance).

When a user clicks on an item, show it immediately in the single-item view. Applications
often let the user traverse the grid with the keyboard—for example, with the arrow keys
and space bar. (See the Keyboard Only pattern in Chapter 1.)

If the user owns the items, offer ways to move, reorder, and delete items at this level in the
interface. This implies having a multiple-selection interface, such as Shift-select, check-
boxes, or lassoing a group of items with the pointer. Cut, copy, and paste should also work
in applications.

You can offer slideshow or playlist functionality to all users at the Thumbnail Grid level.

The single-item view
Show a large view of the selected image (or a player, for a video). Display metadata—in-
formation about the item—next to it. This view can be next to the Thumbnail Grid if the
window is large, or it might replace the area used by the grid. In practice, this means
choosing between a Two-Panel Selector and a One-Window Drilldown. See Chapter 5 for
these list-related patterns.

If the interface is a website or is otherwise web-connected, you might choose to offer
social features at this level. Comments, liking or thumbs-up, and sharing might be here;
see the Sharing Widget and other patterns in Chapter 9. Likewise, tagging or labeling can
also be done here, either privately or publicly. An “other items you may like” feature is
sometimes found in web-based public collections.

Editing features for individual items will live here, also. For instance, a photo manager
might offer simple functionality such as cropping, color and brightness adjustment, and
red-eye reduction. Metadata properties could be edited here, too. If a full editor is too
complex to present here, give the user a way to launch a “real” editor. (Adobe Bridge, for
example, lets the user launch Photoshop on a photo.) Use Button Groups to maintain a
simple, comprehensible visual grouping of all these features.

Link the item to the previous and next items in the list by providing “previous” and “next”
buttons, especially if you use One-Window Drilldown to display the single-item view (which
also requires a “back” button). See the Pyramid navigational pattern in Chapter 3.

42  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

The browsing interface
The contents of the Thumbnail Grid should be driven by a browsing interface that might be
complex, simple, or nearly nonexistent, depending on the nature of the application.

At minimum, most interfaces should offer a search box, either to search an individual
user’s items or to search all public items (or both).

Private photo and video management interfaces—especially desktop apps such as Picasa
and iPhoto—should let the user browse the filesystem for images stored in different di-
rectories. If users can group items into albums, sets, projects, or other types of collections,
these should be available in a browsing interface, too. Most also permit favoriting or star-
ring of items.

Most apps and sites show the browsing interface above or to the left of the Thumbnail Grid.
For highly interactive software, they relate to each other as a Two-Panel Selector: when the
user selects a category or folder (or enters a search term), the contents immediately show
up in the Thumbnail Grid next to the browsing interface.

Filters are sometimes found here. Adobe Bridge puts filters into its browsing interface;
more than 10 properties can be used to slice through a large collection of items, including
keywords, modification date, camera type, and ISO.

Websites that host public collections, such as YouTube and Flickr, sometimes use the en-
tire home page as a browsing interface. Sites such as these are faced with an interesting
choice: when a signed-in user who “owns” content visits the home page, should she see
her own personal collections, or the featured content that the rest of the public sees? Or
both?

Examples

Picasa and Adobe Bridge, along with iPhoto (shown in Figure 2-10), are desktop applica-
tions for managing personal collections of images. Their browsing interfaces—all Two-
Panel Selectors—vary in complexity from iPhoto’s very simple design to Adobe Bridge’s
numerous panels and filters. Picasa (Figure 2-11) and iPhoto use One-Window Drilldown to
reach the single-item view, while Adobe Bridge (Figure 2-12) puts all three views together
on one page.

The Patterns  43 

Figure 2-11. Two views of Picasa

Figure 2-12. Adobe Bridge, which contains all views in one complex window

Flickr’s design (Figure 2-13) has been mimicked by many other web-based image and
video collections. Browsing images at Flickr is different from browsing in a private, desk-
top-based application—sets, pools, groups, and users’ public collections are the means
by which one explores the Flickr universe. Social elements are critical to Flickr’s vitality,
too. But you can still see a Thumbnail Grid, a single-item view reached via One-Window
Drilldown, item details, and a Pyramid navigational pattern (previous, next, up).

44  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-13. Flickr

Even video sites fit this pattern. When you view someone’s YouTube channel, you can
choose to see either a Thumbnail Grid, or a list beside a video player (the default). (Both
options are shown in Figure 2-14.) Clicking a thumbnail brings you to the page for that
video, where detailed information and discussion are shown. Visitors can browse by look-
ing at playlists, the latest videos added, the most-viewed videos, and the top-rated videos;
a search box is also provided, as it is everywhere.

Figure 2-14. The Sesame Street channel on YouTube

TED’s browsing interface is more complex (see Figure 2-15). Its home page offers a dy-
namically changeable infographic made up of thumbnails of different sizes. By toggling
fields on and off, visitors can narrow down the field of videos and find the ones they want.
Rolling over a thumbnail gives item details. Clicking on it brings you to a single-item
view, which looks a lot like YouTube’s.

The Patterns  45 

Figure 2-15. TED

In other libraries

The Image Browser pattern at Welie.com describes some aspects of a Picture Manager:

http://welie.com/patterns/showPattern.php?patternID=image-browsing

Dashboard

Figure 2-16. Fitbit

http://welie.com/patterns/showPattern.php?patternID=image-browsing

46  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

What

Arrange data displays into a single information-dense page, updated regularly. Show users
relevant, actionable information, and let them customize the display as necessary.

Use when

Your site or application deals with an incoming flow of information from something—
web server data, social chatter, news, airline flights, business intelligence information,
or financials, for example. Your users would benefit from continuous monitoring of that
information.

Why

This is a familiar and recognizable page style. Dashboards have a long history, both online
and in the physical world, and people have well-established expectations about how they
work: they show useful information, they update themselves, they usually use graphics to
display data, and so on.

A dashboard is also a guild of interlocking patterns and components. Many online dash-
boards use these in predictable ways:

•	 Titled Sections

•	 Tabs and Collapsible Panels

•	 Movable Panels

•	 One-Window Drilldown

•	 Lists and tables of various kinds (see
Chapter 5)

•	 Row Striping

•	 Information graphics (see Chapter 7)

•	 Datatips

How

Determine what information users need or want to see. This isn’t as simple as it sounds,
because you need an editorial eye—you can’t just splatter the screen with confusing or
unimportant data, or people won’t be able to pick out the parts that matter. Remove, or at
least deemphasize, information that doesn’t help the user.

Use a good visual hierarchy (see Chapter 4) to arrange lists, tables, and information graph-
ics on the page. Try to keep the main information on one page, with little or no scrolling,
so people can keep the window on-screen and see everything at a glance. Group related
data into Titled Sections, and use tabs only when you’re confident that users won’t need to
see the tab contents side by side.

Use One-Window Drilldown to let users see additional details about the data—they should
be able to click on links or graphics to find out more. Datatips work well to show individual
data points when the pointer rolls over an information graphic.

The Patterns  47 

Choose appropriate and well-designed information graphics for the data you need to
show. Gauges, dials, pie charts, and 3D bar charts look nice, but they are rarely the best
way to show comparative information at a glance—simple line and bar charts express data
better, especially time-based data. When numbers and text are more relevant than graph-
ics, use lists and tables. Row Striping is a common pattern for multicolumn data tables.

People will try to get actionable information from the dashboard at a glance, without
looking hard at every element on the page. So, when you show text, consider highlighting
keywords and numbers so that they stand out from surrounding text.

Should your users be able to customize their dashboard displays? Many dashboards do
offer customization, and your users may expect it. One way to customize a dashboard
page is to rearrange the sections—iGoogle and My Yahoo! both offer Movable Panels to
users, in addition to choosing which gadgets get shown.

Examples

My Yahoo! is a portal-style dashboard, showing weather, news, email, and other person-
alized information to a signed-in user (see Figure 2-17). This is the kind of window that
someone would check frequently throughout the day or week. It can be rearranged via
Movable Panels, and a user can decide which sections and widgets to show.

Figure 2-17. My Yahoo!

48  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Netvibes offers fully customizable dashboards that can be hooked up to a broad-based
web search (see Figure 2-18). With this, someone can stay abreast of conversations, pic-
tures, and articles about a fast-moving topic. A tool tip shows the first few words of an
article, which can help the user to decide whether to click through or not.

Figure 2-18. Netvibes

Google Analytics is more like the Fitbit example in Figure 2-16 at the top of the pattern—
it uses information graphics to show a visual snapshot of a system. In Figure 2-19, the
system is a website, and the dashboard illustrates log data.

The Patterns  49 

Figure 2-19. Google Analytics

In other libraries

http://quince.infragistics.com/Patterns/Dashboard.aspx

http://patternry.com/p=information-dashboard/

Dashboard is one of the canonical RIA screen layouts described by Bill Scott and Theresa
Neil. An article in UX Magazine explains these layouts:

http://www.uxmag.com/design/rich-internet-application-screen-design

Finally, you may be interested in Stephen Few’s book, Information Dashboard
Design: The Effective Visual Communication of Data (O’Reilly, http://oreilly.com/
catalog/9780596100162/).

http://quince.infragistics.com/Patterns/Dashboard.aspx
http://patternry.com/p=information-dashboard/
http://www.uxmag.com/design/rich-internet-application-screen-design

50  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Canvas Plus Palette

Figure 2-20. Photoshop CS5

What

Place an iconic palette next to a blank canvas; the user clicks on the palette buttons to cre-
ate objects on the canvas.

Use when

You’re designing any kind of graphical editor. A typical use case involves creating new
objects and arranging them on some virtual space.

The Patterns  51 

Why

This pair of panels—a palette with which to create things, and a canvas on which to put
them—is so common that almost every user of desktop software has seen it. It’s a natural
mapping from familiar physical objects to the virtual on-screen world. And the palette
takes advantage of visual recognition: the most common icons (paintbrush, hand, mag-
nifying glass, etc.) are reused over and over again in different applications, with the same
meaning each time.

How

Present a large empty area to the user as a canvas. It might be in its own window, as in
Photoshop (Figure 2-20), or embedded in a single page with other tools. The user just
needs to see the canvas side by side with the palette. Place additional tools—property
panels, color swatches, and so on—to the right or bottom of the canvas, in small palette-
like windows or panels.

The palette itself should be a grid of iconic buttons. They can have text in them if the icons
are too cryptic; some GUI-builder palettes list the names of GUI components alongside
their icons, for instance. So does Visio, with its palettes of complex visual constructs tai-
lored for specific domains. But the presence of icons is necessary for users to recognize
the palette for what it is.

Place the palette to the left or top of the canvas. It can be divided into subgroups, and you
may want to use Module Tabs or Collapsible Panels to present those subgroups.

Most palette buttons should create the pictured object on the canvas. But many builders
have successfully integrated other things, such as zoom mode and lassoing, into the pal-
ette. This started early; MacPaint mixed its modes into its palette (see Figure 2-24) and
people have learned what the arrow, hand, and other icons do.

The gestures used to create items on a palette vary from one application to another. Some
use drag-and-drop only; some use a single click on the palette and a single click on the
canvas; and some use One-off Modes, Spring-Loaded Modes (see the previous edition of
this book for both of these patterns), and other carefully designed gestures. I have always
found that usability testing in this area is particularly important, since users’ expectations
vary greatly.

Examples

The Raven vector editor (Figure 2-21), by Aviary, and Sumo Paint (Figure 2-22) are two
web-based graphic editors that follow this pattern faithfully.

52  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-21. Raven

Figure 2-22. Sumo Paint

The Patterns  53 

Adobe Flash Builder places its palette of Flex UI components at the lower left, as shown in
Figure 2-23. Next to the icons, the palette shows text labels that clarify exactly what kind
of component will be created for each palette item. Users of this application are assumed
to be skilled enough to know the approximate names of the components they need. (Also
shown is a drag operation from the palette to the canvas.)

Figure 2-23. Flash Builder

Taking a trip back in time, let’s look at one of the interfaces that popularized this pattern:
MacPaint (see Figure 2-24). The pattern hasn’t changed much since 1984—the basic ele-
ments are all there, in the same spatial configuration used by contemporary software such
as Photoshop. Photoshop and other visual builders, in fact, still use many of MacPaint’s
icons more than 20 years later.

54  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-24. MacPaint, circa 1984

In other libraries

Palette/Canvas is one of the canonical RIA screen layouts described by Bill Scott and
Theresa Neil. An article in UX Magazine explains these layouts:

http://www.uxmag.com/design/rich-internet-application-screen-design

Wizard

Figure 2-25. The first two steps of the My Yahoo! setup Wizard

http://www.uxmag.com/design/rich-internet-application-screen-design

The Patterns  55 

What

Lead the user through the interface step by step to do tasks in a prescribed order.

Use when

You are designing a UI for a task that is long or complicated, and that will usually be
novel for users—not something that they do often or want much fine-grained control
over (such as the installation of a software package). You’re reasonably certain that the
designer of the UI will know more than the user does about how best to get the task done.

Tasks that seem well suited for this approach tend to be either branched or very long and
tedious—they consist of a series of user-made decisions that affect downstream choices.

The catch is that the user must be willing to surrender control over what happens when.
In many contexts, that works out fine, since making decisions is an unwelcome burden for
people doing certain things: “Don’t make me think, just tell me what to do next.” Think
about moving through an unfamiliar airport—it’s often easier to follow a series of signs
than it is to figure out the airport’s overall structure. You don’t get to learn much about
how the airport is designed, but you don’t care about that.

But in other contexts, it backfires. Expert users often find Wizards frustratingly rigid and
limiting. This is particularly true for software that supports creative processes such as
writing, art, or coding. It’s also true for users who actually do want to learn the software;
Wizards don’t show users what their actions really do, or what application state gets changed
as choices are made. That can be infuriating to some people. Know your users well!

Why

Divide and conquer. By splitting up the task into a sequence of chunks, each of which can
be dealt with in a discrete “mental space” by the user, you effectively simplify the task. You
have put together a preplanned road map through the task, thus sparing the user the effort
of figuring out the task’s structure—all he needs to do is address each step in turn, trusting
that if he follows the instructions, things will turn out OK.

But the very need for a Wizard indicates that a task may be too complicated. If you can sim-
plify a task to the point where a short form or a few button clicks can do the trick instead,
that’s a better solution. (Keep in mind, too, that Wizards are considered a bit patronizing
in some Asian cultures.)

56  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

How

“Chunking” the task
Break up the operations constituting the task into a series of chunks, or groups of opera-
tions. You may need to present these groups in a strict sequence, or not; sometimes there
is value in breaking up a task into steps 1, 2, 3, and 4 just for convenience.

A thematic breakdown for an online purchase may include screens for product selection,
payment information, a billing address, and a shipping address. The presentation order
doesn’t much matter because later choices don’t depend on earlier choices. Putting related
choices together just simplifies things for people filling out those forms.

You may decide to split up the task at decision points so that choices made by the user can
change the downstream steps dynamically. In a software installation Wizard, for example,
the user may choose to install optional packages that require yet more choices; if she
chooses not to do a custom installation, those steps are skipped. Dynamic UIs are good at
presenting branched tasks such as this, because the user never has to see anything that’s
irrelevant to the choices she made.

In either case, the hard part of designing this kind of UI is striking a balance between the
sizes of the chunks and the number of them. It’s silly to have a 2-step Wizard, and a 15-step
Wizard is tedious. On the other hand, each chunk shouldn’t be overwhelmingly large, or
you’ve lost some benefits of this pattern.

Physical structure
Wizards that present each step in a separate page, usually navigated with Back and Next
buttons, are the most obvious and well-known implementation of this pattern. They’re
not always the right choice, though, because now each step is an isolated UI space that
shows no context—the user can’t see what went before or what comes next. But an advan-
tage of such Wizards is that they can devote each page to that step completely, including
illustrations and explanations.

If you do this, allow the user to move back and forth at will through the task sequence.
Offer a way for the user to step backward, or to otherwise change her mind about an
earlier choice. Additionally, many UIs show a selectable map or overview of all the steps,
getting some of the benefits of a Two-Panel Selector. (In contrast to that pattern, a Wizards
implies a prescribed order—even if it’s merely suggested—as opposed to completely ran-
dom access.)

If you instead choose to keep all the steps on one page, you could use one of several pat-
terns from Chapter 4:

•	 Titled Sections, with prominent numbers in the titles. This is most useful for tasks that
aren’t heavily branched, since all steps can be visible at once.

•	 Responsive Enabling, in which all the steps are present on the page, but each one re-
mains disabled until the user has finished the previous step.

The Patterns  57 

•	 Responsive Disclosure, in which you wait to show a step on the UI until the user fin-
ishes the previous one. Personally, I think this is the most elegant way to implement
a short Wizard. It’s dynamic, compact, and easy to use.

Good Defaults (from Chapter 8) are useful no matter how you arrange the steps. If the user
is willing to turn over control of the process to you, odds are good she’s also willing to let
you pick reasonable defaults for choices she may not care much about, such as the location
of a software installation.

Examples

The My Yahoo! example in Figure 2-25 illustrates many good features of a contemporary
Wizard. It uses a “lightbox” technique to focus attention on the modal dialogs; it lays out a
clear Sequence Map (Chapter 3) of steps to show the user what will happen; it’s short, easy
to use, and visually interesting; and it has a Cancel button in the upper right, as an Escape
Hatch from the whole thing.

Mint’s add-a-bank dialog (see Figure 2-26) doesn’t use a numbered sequence of steps, nor
does it use a permanent Next button. But it still has the quintessential Wizard quality of
leading the user through a relatively complex series of steps, one screen at a time. Also,
the list of steps on the lefthand side (which can’t be clicked) gives the user an overview of
what to expect.

Figure 2-26. Mint’s add-a-bank Wizard

58  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

The Microsoft Office designers have done away with many of its Wizards, but a few remain—
and for good reason. Importing data into Excel is a potentially bewildering task. The
Import Wizard (see Figure 2-27) is an old-school, traditional application Wizard with
Back/Next buttons, branching, and no sequence map. But it works. Each screen lets you
focus on the step at hand, without worrying about what comes next.

Figure 2-27. Excel data import Wizard

In other libraries

http://ui-patterns.com/patterns/Wizard

http://www.welie.com/patterns/showPattern.php?patternID=wizard

http://patternry.com/p=one-page-wizard/

http://patternry.com/p=multiple-page-wizard/

http://quince.infragistics.com/Patterns/Wizard.aspx

Wizard is one of the canonical RIA screen layouts described by Bill Scott and Theresa
Neil. An article in UX Magazine explains these layouts:

http://www.uxmag.com/design/rich-internet-application-screen-design

http://ui-patterns.com/patterns/Wizard
http://www.welie.com/patterns/showPattern.php?patternID=wizard
http://patternry.com/p=one-page-wizard/
http://patternry.com/p=multiple-page-wizard/
http://quince.infragistics.com/Patterns/Wizard.aspx
http://www.uxmag.com/design/rich-internet-application-screen-design

The Patterns  59 

Settings Editor

Figure 2-28. Mac OS system preferences

What

Provide an easy-to-find, self-contained page or window where users can change settings,
preferences, or properties. Divide the content into separate tabs or pages, if you need to
manage large numbers of settings.

Use when

You are designing any of the following applications or tools, or something similar:

•	 An application that has app-wide preferences.

•	 An operating system, mobile device, or platform that has system-wide preferences.

•	 A site or app for which a user must sign in—users will need to edit their accounts
and profiles.

•	 An open-ended tool to create documents or other complex work products. Users may
need to change a document’s properties, an object within a document, or another item.

•	 A product configurator, which allows people to customize a product online. (This
is really a different pattern, however, with slightly different requirements and con-
straints. See the Product Configurator pattern at http://www.welie.com/patterns/
showPattern.php?patternID=product-configurator.)

Why

Though both use forms, a Settings Editor is distinct from a Wizard, and it has very par-
ticular requirements. A user must be able to find and edit a desired property without
being forced to walk through a prescribed sequence of steps—random access is important.

60  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

To aid findability, the properties should be grouped into categories that are well labeled
and make immediate sense.

Another important aspect of Settings Editor design is that people will use it for viewing
existing settings, not just changing them. The design needs to communicate the values of
those settings at a glance.

Experienced users have strong expectations for preference editors, account settings, and
user profiles being in familiar places and behaving in familiar ways. Break these expecta-
tions at your own peril!

How

First, make it findable. Most platforms, both mobile and desktop, have a standard place
to find application-wide preferences—follow the conventions, and don’t try to be overly
clever. Likewise, websites where people sign in usually put links to account settings and
profiles where the username is shown, often in the upper-right or -left corner.

Second, group the properties into pages, and give those pages names that make it easy
to guess what’s on them. (Sometimes all the properties or settings fit on one page, but
not often.) Card-sorting exercises with representative users can help you figure out the
categories and their names. An outrageously large number of properties may require a
three- or four-level hierarchy of groups, but be careful that users don’t get frustrated at
having to click 53 times to reach commonly needed properties.

Third, decide how to present these pages. Tabs, Two-Panel Selector, and One-Window
Drilldown (Chapter 5) with an extensive page “menu” on the top page seem to be the most
common layouts for Settings Editors.

The design of the forms themselves deserves an entire chapter. See Chapter 8 for patterns
and techniques used in forms.

Finally, should you immediately apply changes that the user makes, or offer Save and
Cancel buttons? That may depend on the type of settings you’re working with. Platform-
wide settings seem to be applied immediately when changed; settings on websites mostly
use Save buttons; and application settings and preferences can go either way. It may not be
a huge usability issue in any case. Follow an established convention if there is one, or see
what the underlying technology requires; test it with users if you still have open questions.

Examples

Windows 7 offers the “outrageously large number of properties” that require a deep hier-
archy of pages. The screenshots in Figure 2-29 illustrate the journey from the top of the
Settings Editor down to the page that lets you change the desktop theme. (There’s one more
level, too—if you want to change the desktop icons or some other obscure thing, you need
to launch a dialog from a link on the last screen.)

The Patterns  61 

The designers mitigated some of the problems with a deep hierarchy, however. For instance,
they put a list of shortcuts on the top-level page; these are probably the items users look for
most often. They put a search box on the top and clickable Breadcrumbs beside it. And by put-
ting lists of items on the top two levels, they show users which items fall into which categories.

Figure 2-29. Windows 7 settings editor

62  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Yahoo! (Figure 2-30) and Facebook (Figure 2-31) both use tabs to present the pages of
their profile editors. The Yahoo! example is actually two-level; see the tabs across the top.

Figure 2-30. Yahoo! profile settings

Figure 2-31. Facebook profile settings

The Patterns  63 

Amazon has one single link for all account-related information: “Your Account” (see
Figure 2-32). This Menu Page (Chapter 3) lists account settings alongside order informa-
tion, credit card management, digital content, and even community and wish-list activ-
ity. The clean, tight page organization is terrific—if I have any questions about what’s
going on with my relationship to Amazon, I know I can find it somewhere on this page.
(Contrast this to Facebook, which habitually obscures certain profile information behind
complicated design.)

Figure 2-32. Amazon account settings

64  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Alternative Views

Figure 2-33. Google Maps

What

Let the user choose among alternative views that are substantially different from the de-
fault view.

Use when

You’re building something that views or edits a complex document, list, website, map, or
other content. Maybe you already provide some customizability—font size, language, sort
order, zoom level, and so forth—but those lightweight changes don’t go far enough to ac-
commodate all the things people typically do with it.

You may face design requirements that directly conflict with each other. You can’t find a
way to show both feature set A and feature set B at the same time, so you need to design
both separately and let the user choose between them.

Why

Try as you might, you can’t always accommodate all possible usage scenarios in a single
design. For instance, printing is typically problematic for websites because the informa-
tion display requirements differ—navigation and interactive gizmos should be removed,
for instance, and the remaining content reformatted to fit the printer paper.

There are several other reasons for Alternative Views:

•	 Users have preferences with regard to speed, visual style, and other factors.

•	 A user might need to temporarily view data through a different “lens” or perspec-
tive in order to gain insight into a problem. Consider a map user switching between
views of street information and topographic information (see Figure 2-33 at the top
of the pattern).

The Patterns  65 

•	 If a user is editing a slideshow or website, for instance, he may do most of his editing
while using a “structural” view of the document, containing editing handles, markers
for invisible content, layout guides, private notes, and so on. But sometimes he will
want to see the work as an end user would see it.

How

Choose a few usage scenarios that cannot easily be served by the application’s or site’s nor-
mal mode of operation. Design specialized views for those scenarios, and present them as
alternatives within the same window or screen.

In these alternative views, some information might be added and some might be taken
away, but the core content should remain more or less the same. A common way to switch
views is to change the rendering of a list; file finders in both Windows and Mac OS let
users switch from lists to Thumbnail Grids to Tree Tables to Cascading Lists to Carousels, for
instance.

If you need to strip down the interface—for use by a printer or screen reader, for instance—
consider removing secondary content, shrinking or eliminating images, and cutting out
all navigation but the most basic.

Put a “switch” for the mode somewhere on the main interface. It doesn’t have to be promi-
nent; PowerPoint and Word used to put their mode buttons in the lower-left corner, which
is an easily overlooked spot on any interface. Most applications represent the alternative
views with iconic buttons. Make sure it’s easy to switch back to the default view, too. As
the user switches back and forth, preserve all of the application’s current state—selections,
the user’s location in the document, uncommitted changes, undo/redo operations, and so
on—because losing them will surprise the user.

Applications that “remember” their users often retain the user’s alternative-view choice
from one use to the next. In other words, if a user decides to switch to an alternative view,
the application will just use that view by default next time. Websites can do this by using
cookies; desktop applications can keep track of preferences per user; an app on a mobile
device can simply remember what view it used the last time it was invoked. Web pages
may have the option of implementing Alternative Views as alternative CSS pages. This is
how some sites switch between ordinary pages and print-only pages, for example.

Examples

In Figures 2-34 and 2-35, two graphic editors, Microsoft PowerPoint and Adobe Illustrator,
show different views of a work product. In the slideshow, the user normally edits one slide
at a time, along with its notes, but sometimes the user needs to see all the slides laid out
on a virtual table. (Not shown is a third view, in which PowerPoint takes over the screen
and actually plays the slideshow.) In the website example, Illustrator shows an “outline”

66  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

view of the graphic objects in the document—most useful if you have a lot of complex and
layered objects—and the normal, fully rendered view of the artwork. The outline view
speeds up work considerably.

Figure 2-34. PowerPoint alternative views

Figure 2-35. Illustrator alternative views

News sites and blogs often show lots of “extras” in the margins around an article, many of
which are animated or interactive. But some sites considerately provide a print view—a
version of the article that has none of that extra stuff. The formatting is simple, and the
branding is minimal. The example in Figure 2-36 is from CNN.

The Patterns  67 

Figure 2-36. CNN web and print views of an article

In other libraries

http://quince.infragistics.com/Patterns/Alternative%20Views.aspx

http://quince.infragistics.com/Patterns/Alternative Views.aspx

68  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Many Workspaces

Figure 2-37. Firefox windows and tabs

What

Use multiple top-level tabs, tab groups, and windows so that users can view more than
one page, project, file, or context at a time. Let users place these workspaces side by side
if possible.

Use when

You’re building an application that views or edits any type of content—websites, docu-
ments, images, or entire projects that include many files.

Designers of conventional websites don’t generally need to think about this. All the com-
mon browsers supply perfectly good implementations of this pattern, using tabs and
browser windows (as shown in Figure 2-37 at the top of the pattern).

Applications whose central organizing structure is a personal News Stream may not need
Many Workspaces, either. Email clients, personal Facebook pages, and so forth only show
the one News Stream that matters to the user; multiple windows don’t add much value.
That being said, email clients often let a user launch multiple email messages in different
windows. Some Twitter applications can show several filtered streams side by side—they
might show a search-based feed, then a feed from a custom list, then a feed of popular
retweets, for instance. (See the TweetDeck example in Figure 2-38.)

Why

People multitask. They go off on tangents, abandon trains of thought, stop working on
task A to switch to task B, and eventually come back to something they left hanging. One
way or the other, they will multitask, so you might as well support it directly with a well-
designed interface for doing so.

The Patterns  69 

Side-by-side comparisons between two or more items can help people learn and gain
insight. Let users pull up pages or documents next to each other without having to labori-
ously switch context from one to another.

This pattern directly supports some Chapter 1 patterns, such as Prospective Memory (a
user may leave a window open as a self-reminder to finish something) and Safe Exploration
(because there’s no cost in opening up an additional workspace while leaving the original
one where it is).

How

Choose one or more ways to show multiple workspaces. Many well-known applications
use the following:

•	 Tabs

•	 Separate operating-system windows

•	 Columns or panels within a window

•	 Split windows, with the ability to adjust the splitters interactively

If you deal with fairly simple content in each workspace—such as text files, lists, or News
Streams—split windows or panels work fine. More complex content might warrant entire
tab pages or windows of their own so that a user can see a larger area at once.

The most complicated cases that I’ve seen involve development environments for entire
coding projects. When a project is open, a user might be looking at several code files,
stylesheets, command windows (where compilers and other tools get run), output or log-
files, or even visual editors. This means that many, many windows or panels can be open
at once.

(And then, perhaps, the user might temporarily switch to another project, with another
set of open files and editors! Some development environments can support that.)

When users close some web browsers, such as Chrome, the set of workspaces (all open
web pages, in tabs and windows) gets automatically saved for later use. Then when the
user restarts the browser, her entire set of previously opened web pages is restored, almost
as she left it. This is especially nice when the browser or machine has crashed. Consider
designing in this feature, as it would be a kindness to your users.

Examples

TweetDeck is a News Stream–type application that can show many streams at once: filtered
Twitter feeds, non-Twitter sources, and so on. The example in Figure 2-38 shows several
typical TweetDeck columns. This maintains the spirit of a News Stream by keeping all
the updates visible at once; had these columns been in different tabs or windows, a user
wouldn’t be able to see all the updates as they happen.

70  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-38. TweetDeck

On tiny mobile screens, you don’t have room to show anything side by side. Safari on the
iPhone has solved this problem by letting the user open up to eight websites at a time, then
using a Carousel to shuffle between them (see Figure 2-39). A user swipes to the right and
left to reach the other windows.

Figure 2-39. Safari’s browser windows on the iPhone

The Patterns  71 

Multi-Level Help

Traditional
help menu

Input
prompt

Content-specific
help

Online
resources

Tooltips Help queries

Figure 2-40. Many types of help in Excel

What

Use a mixture of lightweight and heavyweight help techniques to support users with vary-
ing needs.

Use when

You’re designing a complex application. Some users may need a full-fledged help system,
but you know most users won’t take the time to use it. You want to support the impatient
or occasional user too, to the extent you can. In particular, you might need to tailor your
design for intermediate-to-expert users—but how will you help beginners become experts?

Why

Users of almost any software artifact need varying levels of support for the tasks they’re
trying to accomplish. Someone approaching it for the first time ever (or the first time in
a while) needs different support than someone who uses it frequently. Even among first-
time users, enormous differences exist in commitment level and learning styles. Some
people want to read a tutorial, some won’t; most find tool tips helpful, but a few find them
irritating.

72  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Help texts that are provided on many levels at once—even when they don’t look like tra-
ditional “help systems”—reach everyone who needs them. Many good help techniques
put the help texts within easy reach, but not directly in the user’s face all the time, so users
don’t get irritated. However, the techniques need to be familiar to your users. If they don’t
notice or open a Collapsible Panel, for instance, they’ll never see what’s inside it.

How

Create help on several levels, including some (but not necessarily all) of the help types in
the following list. Think of it as a continuum: each requires more effort from the user than
the previous one, but can supply more detailed and nuanced information.

•	 Captions and instructions directly on the page, including patterns such as Input Hints
and Input Prompt (both found in Chapter 8). Be careful not to go overboard with
them. If done with brevity, frequent users won’t mind them, but don’t use entire para-
graphs of text—few users will read them.

•	 Tool tips. Use them to show very brief, one- or two-line descriptions of interface
features that aren’t self-evident. For icon-only features, tool tips are critical; users can
take even nonsensical icons in stride if a rollover says what the icon does! (Not that I’d
recommend poor icon design, of course.) Tool tips’ disadvantages are that they hide
whatever’s under them and that some users don’t like them popping up all the time.
A short time delay for the mouse hover—for example, one or two seconds—removes
the irritation factor for most people.

•	 Hover Tools (Chapter 6). These can display slightly longer descriptions, shown dy-
namically as the user selects or rolls over certain interface elements. Set aside areas
on the page itself for this, rather than using a tiny tool tip.

•	 Longer help texts contained inside Collapsible Panels (see Chapter 4).

•	 Introductory material, such as static introductory screens, guided tours, and videos.
When a new user starts the application or service for the first time, these materials
can immediately orient him toward his first steps (see the Instant Gratification pattern
in Chapter 1). Users might also be interested in links to help resources. Offer a toggle
switch to turn off the introduction—users will eventually stop finding it useful—and
offer a way back to it elsewhere in the interface, in case a user wants to go back and
read it later.

•	 Help shown in a separate window, often in HTML via browsers, but sometimes
in WinHelp or Mac Help. The help resource is often an online manual—an entire
book—reached via menu items on a Help menu, or from Help buttons on dialog
boxes and HTML pages.

•	 “Live” technical support, usually via email, the Web, Twitter, or telephone.

The Patterns  73 

•	 Informal community support. This applies only to the most heavily used and in-
vested software—the likes of Photoshop, Linux, Mac OS X, or MATLAB—but users
may consider it a highly valuable resource. Use social networking resources for these,
or more traditional online forums.

Examples

Firefox is “merely” a web browser, and a free one at that, but its help systems are stellar.
Help is offered at most of the levels described in the preceding list, so both beginners and
experts are well supported. All of the following examples come from Firefox so that you
can see the range of help that can be offered for one product.

When you visit Firefox’s site in order to download the browser, you are greeted by an out-
line of the install process and a very clear call to action, as shown in Figure 2-41.

Figure 2-41. Firefox download page

When you launch it for the first time, you see an introductory screen that may intrigue
the user: easy ways to customize the Firefox look, connections to social media, and links
to help resources (see Figure 2-42). The page also confirms for the user that the install
was successful; if the user needs to do anything more, such as get security updates, the
introductory page will say so.

74  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-42. Firefox startup page

Each tool on the browser window has a tool tip (see Figure 2-43). The basic buttons—
back, next, reload, home—will be familiar to almost all users, but the more obscure items
may need to be explained.

Figure 2-43. Firefox tool tips

The main text fields use Input Prompts to describe themselves (see Figure 2-44). This is a
more appropriate choice than Input Hints (which would be displayed beside the text fields)
because it keeps the window clean and uncluttered. Furthermore, not much knowledge
is lost when a user starts typing into the text field, erasing the prompt. See the pattern
descriptions for Input Hints and Input Prompt in Chapter 8.

The Patterns  75 

Figure 2-44. Firefox input prompts

Some dialogs attempt to describe themselves, as shown in Figure 2-45.

Figure 2-45. Firefox toolbars dialog

Other dialogs offer links to the formal help system; an appropriate help page is displayed
in a browser window when the user clicks the round purple button in the lower-left cor-
ner (see Figures 2-46 and 2-47).

Figure 2-46. Firefox preferences dialog

76  Chapter 2:  Organizing the Content: Information Architecture and Application Structure

Figure 2-47. Firefox preferences dialog help page

Finally, if all other sources of help are exhausted, a user can turn to the wider user com-
munity for advice. We’ve now moved beyond the realm of software design per se, but this
is still product design—the user experience extends beyond the bits installed on users’
computers. It includes the interactions they have with the organization, its employees or
other representatives, and its website (see Figure 2-48).

Community building like this happens only for products in which users become deeply
invested, perhaps because they use the product every day at work or at home—as is the
case with Firefox—or because they have some emotional attachment to it.

Figure 2-48. Firefox support forums

Chapter 3

Getting Around:
Navigation, Signposts, and Wayfinding

The patterns in this chapter deal with the problem of navigation. How do users know
where they are now, where to go next, and how to get there from here?

I call navigation a “problem” because navigating around a website or application is like
commuting. You have to do it to get where you need to go, but it’s dull, it’s sometimes
infuriating, and the time and energy you spend on it just seems wasted. Couldn’t you be
doing something better with your time, such as playing a game or getting some actual
work done?

The best kind of commuting is none at all. Having everything you need right at your fin-
gertips without having to travel somewhere is pretty convenient. Likewise, keeping most
tools “within reach” on an interface is handy, especially for intermediate-to-expert users
(i.e., people who have already learned where everything is). Sometimes you do need to
put lesser-used tools on separate screens, where they don’t clutter things up; sometimes
you need to group content onto different pages so that the interface makes sense. All this
is fine, as long as the “distances” that a user must travel remain short.

So, less is better. Let’s talk terminology for a minute and come back to this concept.

Staying Found
Let’s say you’ve built a large website or application that you’ve had to break up into sec-
tions, subsections, specialized tools, pages, windows, wizards, and so forth. How do you
help users navigate?

Signposts are features that help users figure out their immediate surroundings. Common
signposts include page and window titles, web page logos and other branding devices,
tabs, and selection indicators. Patterns and techniques such as good global and local navi-
gation links, Sequence Map, Breadcrumbs, and Annotated Scrollbar—all described in this
chapter—tell users where they currently are, and often where they can go with only one
more jump. They help a user to stay “found” and to plan his next steps.

78  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Wayfinding is what people do as they find their way toward their goal. The term is pretty
self-explanatory. But how people actually do it is quite a research subject—specialists
from cognitive science, environmental design, and website design have studied it. These
common-sense features help users with wayfinding:

Good signage
Clear, unambiguous labels anticipate what you’re looking for and tell you where to
go; signs are where you expect them to be, and you’re never left standing at a decision
point without guidance. You can check this by walking through the artifact you’re
designing and following the paths of all the major use cases. Make sure that each
point where a user must decide where to go next is signed or labeled appropriately.
Use strong “calls to action” on the first pages that a user sees.

Environmental clues
You’d look for restrooms in the back of a restaurant, for instance, or a gate where a
walkway intersects a fence. Likewise, you would look for an “X” close button at the
top right of a modal dialog and logos in the upper-left corner of a web page. Keep
in mind that these clues are often culturally determined, and someone new to the
culture (e.g., someone who’s never used a given operating system before) will not be
aware of them.

Maps
Sometimes people go from sign to sign or link to link without ever really knowing
where they’re going in a larger frame of reference. (If you’ve ever found your way
through a strange airport, that’s probably what you did.) But some people might pre-
fer to have a mental picture of the whole space, especially if they’re there often. Also,
in badly signed or densely built spaces, such as urban neighborhoods, maps may be
the only navigational aids people have.

In this chapter, the Clear Entry Points pattern is an example of careful signage combined
with environmental clues—the links should be designed to stand out on the page. A
Sequence Map, obviously, is a map; you can use Overview Plus Detail (Chapter 7) to show
maps for virtual spaces, too. Modal Panel sort of qualifies as an environmental clue, since
the ways out of a modal panel take you right back to where you just were.

I’ve compared virtual spaces to physical ones here. But virtual spaces have the unique abil-
ity to provide a navigational trump card, one that physical spaces can’t (yet) provide: the
Escape Hatch. Wherever you are, click on that link, and you’re back to a familiar page. It’s
like carrying a wormhole with you. Or a pair of ruby slippers.

The Cost of Navigation
When you walk into an unfamiliar room, you look around. In a fraction of a second, you
take in the shape of the room, the furnishings, the light, the ways out, and other clues; very
quickly, you make some assumptions about what this room is and how it relates to why

The Cost of Navigation  79 

you walked in. Then you need to do what you came in to do. Where? How? You might be
able to answer immediately—or not. Or maybe you’re just distracted by other interesting
things in the room.

Similarly, bringing up a web page or opening a window incurs a cognitive cost. Again, you
need to figure out this new space: you take in its shape, its layout, its contents, its exits, and
how to do what you came to do. All of this takes energy and time. The “context switch”
forces you to refocus your attention and adjust to your new surroundings.

Even if you’re already familiar with the window (or room) you just went into, it still incurs
a cost. Not a large cost, but it adds up—especially when you figure in the actual time it
takes to display a window or load a page.

This is true whether you’re dealing with web pages, application windows, dialog boxes, or
device screens. The decisions that users make about where to go are similar—labels still
need to be read or icons decoded, and the users will still make leaps of faith by clicking on
links or buttons they’re not sure about.

Furthermore, loading time affects people’s decisions. If a user clicks through to a page that
takes too long to load—or fails to load altogether—he may be discouraged, and may just
close the page before he finds what he came for. (So, how many viewers is that sidebar
video player costing you?) Also, if a site’s pages take a chronically long time to load, users
will be less likely to explore that site.

There’s a reason that companies like Google work very hard to keep page loads as fast as
possible: latency costs viewers.

Keep Distances Short
Knowing that there’s a cost associated with jumping from page to page, you can under-
stand now why it’s important to keep the number of those jumps down. When a common
task requires many page jumps, try to reduce it to one or two.

But the real efficiency gains come from the structure of the application. One of the nasti-
est things a designer can do is force a user to go into multiple levels of subpages, dialogs,
and so forth every time he needs to accomplish a simple and everyday task. (Worse is to
lead him there, tell him he can’t accomplish it because of some missing precondition, and
send him back to square one.)

Can you design your application so that the most common 80% of use cases can be done
in one page, without any context switches? (Or perhaps only one?)

This is hard to do with some kinds of applications. Is a certain tool too big to put on your
main page? Try shrinking it: eliminate controls, shorten labels, turn words into pictures,
or use specialized form controls that save space. Is it too distracting when combined with
everything else on the main page? Again, try shrinking it, isolating it with whitespace, or
putting it in an out-of-the-way spot. Can you use progressive disclosure to gradually show
more content on the same page? Can you use Module Tabs or an Accordion to hide some
content by default?

80  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Sometimes it’s appropriate to bury functionality inside pages that take more than one
jump to get to, such as that extra 20% of tasks left over from the 80% you made easily
available. It could also be that on your application, simplicity of presentation is more im-
portant than saving one or two jumps. You could put little-used functionality behind an
extra “door” (also using the 80/20 rule). As always, experiment with different designs, and
usability-test them if you have any doubts.

Navigational Models
What is the navigational model for your site or app? In other words, how do the different
screens (or pages, or spaces) link to each other, and how do users move between them?

First, some more terminology.

Global navigation is what’s found on every main screen. It usually takes the form of
menus, tabs, and/or sidebars, and this is how users move around the formal navigational
structure of the site. (In an earlier version of this book, global navigation was defined as a
pattern. But by now, it’s so common and well understood that it really doesn’t need to be
called out as such anymore.)

Utility navigation, also found on every main screen, contains links and tools related to
noncontent aspects of the site or application: sign-in, help, print, Settings Editors (see
Chapter 2), language tools, and so on.

Associative and inline navigation embed links in or near the actual content. As the user
reads or interacts with the site, these links present options that might be immediately
relevant to the user. They tie content together thematically.

Now let’s look at a few models found in typical sites and apps:

Hub and spoke
Most often found on mobile devices, this architecture (Figure 3-1) lists all the major
parts of the site or app on the home screen, or “hub.” The user clicks or taps through
to them, does what she needs to do, and comes back to the hub to go somewhere else.
The “spoke” screens focus tightly on their jobs, making careful use of space—they
may not have room to list all the other major screens. The iPhone home screen is a
good example; the Menu Page pattern found on some websites is another.

Figure 3-1. Hub and spoke

Navigational Models  81 

Fully connected
Many websites follow this model. There’s a home page or screen, but it and every
other page link to all the others—they each have a global navigation feature, such as
a top menu. The global navigation may be a single level (as shown in Figure 3-2, with
only five pages), or it might be deep and complex, with multiple levels and deeply
buried content. As long as the user can reach any page from any other with a single
jump, it’s fully connected.

Figure 3-2. Fully connected

Multi-level
This is also common among websites (see Figure 3-3). The main pages are fully con-
nected with each other, but the subpages are only connected among themselves (and
usually to the other main pages, via global navigation). You’ve seen this on sites that
have subpages listed only in sidebars or subtabs—users see these on menus that only
show up after they’ve clicked the link for the main page or category. It takes two or
more jumps to get from one arbitrary subpage to another. Using drop-down menus,
the Fat Menus pattern, or the Sitemap Footer pattern with a multi-level site converts it
to a fully connected one, which is preferable.

Figure 3-3. Multi-level

82  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Stepwise
Slideshows, process flows, and Wizards (see Chapter 2) lead the user step by step
through the screens in a prescribed sequence (see Figure 3-4). Back/Next links are
prominent on the page.

Figure 3-4. Stepwise

Pyramid
A variant on the stepwise model, a pyramid uses a hub page or menu page to list an
entire sequence of items or subpages in one place (see Figure 3-5). The user picks out
any item, jumps to it, and then has the option to use Back/Next links to step through
other items in order. He can go back to the hub page anytime. See the Pyramid pattern
in this chapter for more.

Figure 3-5. Pyramid

Pan-and-zoom
Some artifacts are best represented as single large spaces, not many small ones. Maps,
large images, large text documents, information graphics, and representations of time-
based media (such as sound and video) fall into this category. Chapter 7 discusses
these in more detail. Panning and zooming are still navigation—so offer controls for
panning (moving horizontally or vertically), zooming in and out, and resetting to a
known position and state. Figure 3-6 shows an example of pan-and-zoom.

Figure 3-6. Pan-and-zoom

Navigational Models  83 

Flat navigation
Some types of applications need little or no navigation at all. Consider Canvas Plus
Palette applications such as Photoshop, or other complex apps such as Excel—these
offer tons of tools and functions that are easily reached via menus, toolbars, and pal-
ettes. Tools that don’t act immediately upon the work may be accessible via Modal
Panels or step-by-step progressions. These types of applications seem to be qualita-
tively different from the other navigation styles listed here: the user always knows
where he is, but he may not easily find the tools he needs because of the sheer number
of features available at one time.

Modal panel
This brings a user to a screen with no navigation options other than acknowledging its
message, completing its form, or clicking the panel away (Figure 3-7). Modal panels often
show up layered on top of a full screen or page, and are used for small, focused tasks that
require the user’s full attention. See the Modal Panel pattern for more discussion.

Figure 3-7. Modal panel

Clear entry points
How does a user know where to start in a complex site or app? The Clear Entry Points
pattern shows him where to go first (see Figure 3-8). For first-time and infrequent
users, it removes some of the burden of learning the site.

A

B

Figure 3-8. Clear entry points

84  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Bookmarks
Bookmarks (Figure 3-9), permalinks, deep links, and Deep-linked State are all ways
for a user to conveniently navigate to a point of his choice, anytime he wants, even
if it’s deep inside a navigational structure. These give him a way to avoid traversing
many links to get to a desired page or state.

http://

Figure 3-9. Bookmarks

Escape hatch
When a user is hopelessly entangled in an app, reaches an error state, or gets deep-
linked into a page that he has no context for understanding, he needs an escape hatch
(Figure 3-10), a well-labeled link to get back to a known place. See the Escape Hatch
pattern.

Figure 3-10. Escape hatch

There are three things to notice about these navigational models. The first is that they’re
mix-and-match—an app or site might combine several of these, especially Modal Panel,
Clear Entry Points, bookmarks, and Escape Hatch, which are very local and don’t affect the
site-wide navigation strategy.

The second thing is that some of these mechanisms actually restrict a user’s navigation
options. Most of the time, open access and short jumps are good things. But when a user
is in the middle of a full-screen slideshow, she doesn’t want to see a complicated global
navigation menu! She would rather just focus on the slideshow itself, so Back/Next con-
trols and an Escape Hatch are all that’s necessary. The presence of full navigation options is
not without cost: it takes up space, clutters the screen, incurs cognitive load, and signals
to the user that leaving the page doesn’t matter.

Design Conventions for Websites  85 

Third, all these mechanisms and patterns can be rendered on-screen in different ways. A
complex site or app might use tabs, or menus, or a sidebar tree view to show the global navi-
gation on each page—that’s something you don’t need to decide until you start laying out the
page. Likewise, a modal panel might be done with a lightbox or an actual modal dialog—but
you can postpone that until you know what needs to be modal and what doesn’t.

Visual design can come later in the design progression, after the information architecture
and navigational models.

Design Conventions for Websites
It’s a fine thing to separate the navigational model from its visual design. Doing so can
help you think more flexibly and deliberately about how to design the pages themselves.
But websites have certain conventions regarding visual placement of navigational fea-
tures, and it’s probably unwise to ignore them.

Global navigation is almost always shown at the top or left of a web page, sometimes both.
Rarely, it can be found on the right—this placement can cause problems with page size
and horizontal scrolling, unless the designer uses a Liquid Layout (see Chapter 4).

Two relatively new approaches to global navigation are found in the Fat Menus and Sitemap
Footer patterns. In these, the whole structure of a hierarchical site is laid out for the user to
see, at the cost of screen space in the header or footer. As explained earlier, these patterns
turn a multi-level navigational model into a fully connected one.

When a site’s visitors are typically signed-in members, that site may offer a set of utility
navigation links in its upper-right corner. Users tend to look there for tools related to their
presence on the site: account settings, user profile, logout, help, and so on. See the Sign-in
Tools pattern for more.

A common form of associative navigation—when links are embedded in or near the con-
tent itself, linking items together thematically—is a “Related Articles” section or panel.
News sites and blogs use this a lot: when a user reads an article, a sidebar or footer shows
other articles that talk about similar topics or are written by the same author.

Tags, both user-defined and system-defined, can help support associative navigation and re-
lated articles or links. Tag clouds support topical findability on some sites, especially where
the number of articles is very large and the topics fine-grained. (On smaller sites and blogs,
they don’t work as well.) A more common navigational technique is to list an article’s tags at
the end; each tag is a link leading to a whole set of articles that share that tag.

When a site takes advantage of social media, even more navigation options come into
play. The front of a site may have a News Box, which links users to the items posted most
recently. Content Leaderboards show the most frequently shared or commented pieces,
while Recent Chatter directs users to ongoing conversations. And Social Links and Sharing
Widgets connect users directly to social media services. See Chapter 9 for these patterns.

86  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

The Patterns
To recap, this chapter talks about several aspects of navigation: overall structure or model,
knowing where you are, figuring out where you’re going, and getting there efficiently.

The first set of patterns address the navigational model, and are more or less independent
of screen layout:

1.	 Clear Entry Points

2.	 Menu Page

3.	 Pyramid

4.	 Modal Panel

5.	 Deep-linked State

6.	 Escape Hatch

Combining layout and model on conventional websites, we get these patterns:

7.	 Fat Menus

8.	 Sitemap Footer

9.	 Sign-in Tools

The next few patterns work well as “You are here” signposts (as can a well-designed global
navigation). Sequence Map, Breadcrumbs, and Annotated Scrollbar also serve as interactive
maps of the content. Annotated Scrollbar is intended more for pan-and-zoom models than
for multiple interconnected pages.

10.	 Sequence Map

11.	 Breadcrumbs

12.	 Annotated Scrollbar

Animated Transition helps users stay oriented as they move from one place to another. It’s
a visual trick, nothing more, but it’s very effective at preserving a user’s sense of where he
is and what’s happening.

13.	 Animated Transition

The Patterns  87 

Clear Entry Points

A

B

Figure 3-11. Clear Entry Points schematic

What

Present only a few main entry points into the interface; make them task-oriented and
descriptive. Use clear calls to action.

Use when

You’re designing a site or app that has a lot of first-time or infrequent users. Most of these
users would be best served by reading a certain piece of introductory text, doing an initial
task, or choosing from a very small number of frequently used options.

However, if the purpose is clear to basically everyone who starts it, and if most users might
be irritated by one more navigation step than is necessary (like applications designed for
intermediate-to-expert users), this may not be the best design choice.

Why

Some applications and websites, when opened, present the user with what looks like a
morass of information and structure: lots of tiled panels, unfamiliar terms and phrases,
irrelevant ads, or toolbars that just sit there disabled. They don’t give the hesitant user any
clear guidance on what to do first. “OK, here I am. Now what?”

For the sake of these users, list a few options for getting started. If those options match a
user’s expectations, he can confidently choose one and begin working—this contributes
to immediate gratification. If not, at least he knows now what the site or app actually does,
because you’ve defined the important tasks or categories up front. You’ve made the ap-
plication more self-explanatory.

88  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

How

When the site is visited or the application started, present these entry points as “doors”
into the main content. From these starting points, guide the user gently and unambigu-
ously into the application until he has enough of a context to continue by himself.

Collectively, these entry points should cover most of the reasons most users would be
there. There might only be one or two entry points, or many; it depends on what fits your
design. But you should phrase them with language first-time users can understand—this
is not the place for application-specific tool names.

Visually, you should show these entry points with emphasis proportional to their importance.

On the home page or starting page, most sites will additionally list other navigation links—
global navigation, utility navigation, and so on—and these should be smaller and less prom-
inent than the Clear Entry Points. They’re more specialized, and don’t necessarily lead you
directly into the heart of the site, any more than a garage door leads you directly into the
living room. The Clear Entry Points should serve as the “front doors.”

Examples

The top of Apple’s main iPad page (Figure 3-12) needs to do only a few things: identify
itself, make the iPad look inviting, and direct the user toward resources for buying one
or learning more. The global navigation recedes visually, compared to the strong, well-
defined entry points. On the rest of the page, more text and links make the page denser,
but this is all the user sees above the fold.

Figure 3-12. iPad page on Apple’s site

The Patterns  89 

Fireworks and other applications show a startup dialog when the application is started (see
Figure 3-13). This orients a new or infrequent user to the possibilities for action; creating
something new, opening an existing document, or reading help resources are the most com-
mon items to be found here. (Appropriately, this startup dialog has a checkbox that lets the
user turn it off for future startups. Expert users may not want to bother with such a dialog,
since it adds one more step—and no value—to the process of getting started on their work.)

Figure 3-13. Fireworks startup dialog

In other libraries

http://quince.infragistics.com/Patterns/Clear%20Entry%20Points.aspx

http://quince.infragistics.com/Patterns/Clear Entry Points.aspx

90  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Menu Page

Figure 3-14. Craigslist

What

Fill the page with a list of links to content-rich pages in your site or app. Show enough
information about each link to enable the user to choose well. Show no other significant
content on the page.

Use when

You’re designing a home page, starting screen, or any other screen whose purpose is to be
just a “table of contents”—to show where users can go from here. You may not have room
for featured content (such as an article, video, or promotion), or you may simply want to
let the user pick a link with no distractions.

Mobile apps and sites especially need Menu Pages to make the best use of their small screens.

If your (full-size) site needs to “hook” visitors into staying on the page, it may be better to
use some of the page space for promotional items or other interesting content, and a Menu
Page wouldn’t be the right design choice. Likewise, a site that needs to explain its value
and purpose should use the space to do that instead.

It takes some audacity to design a Menu Page, because you must be very confident that:

The Patterns  91 

•	 Visitors know what the site or app is about.

•	 They know what they came for and how to find it.

•	 They wouldn’t be interested in news, updates, or features.

Why

With no distractions, users can focus all their attention on the available navigation options.
You get the entire screen (or most of it, anyway) to organize, explain, and illustrate those
links, and can thus direct users to the most appropriate destination page for their needs.

How

If you’re creating a mobile design, Menu Pages are one of your principal tools for designing
sites or apps with many levels of functionality. Keep list labels short, make targets large
enough to tap easily (for touch screens), and try not to make hierarchies too deep.

The rest of this applies to full-size sites and apps.

First, label the links well, and provide just enough contextual information for users to
decide where to go. This isn’t necessarily easy. Visitors may find it very helpful to have
a description or teaser with each link, but that could take up a lot of space on the page.
Likewise for thumbnail images—they can look great, but how much value do they add?

Look at Figures 3-15 and 3-16. Visitors to the MIT site already know the meanings of
these links—they’re the names of academic programs—so extra information is unnec-
essary. The designer is thus able to pack in more links above the fold. The result is an
information-dense, useful page.

On the other hand, the articles in the AIGA resources page do benefit from descriptive
text and images. The titles alone aren’t necessarily enough to persuade a visitor to click
through. (Keep in mind, too, that a user who clicks through and finds that the destination
page isn’t what he wanted will get frustrated quickly. Make sure your descriptions are ac-
curate and fair!)

Second, consider the visual organization of the list of links. Do they come in categories, or
perhaps a two- or three-level hierarchy? Is it ordered by date? Express that organizational
scheme in the list. See Chapter 5 for more discussions on this topic.

Third, don’t forget a search box.

Finally, reconsider whether you have anything else to say on this page. Home page space,
in particular, is quite valuable for drawing in users. Is there an interesting article teaser
you can put there? A work of visual art? A News Box (see Chapter 9)? If such things would
annoy more than intrigue, continue designing a pure Menu Page.

92  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Examples

In the website for MIT (Figure 3-15), the “Education” page shows very little explanatory
text and a whole lot of links. When a user reaches this point in the website, she’s probably
looking for a specific department or resource, and she isn’t looking for, say, an explanation
of what MIT is about. The whole point of this page is to move the visitor along to a page
that answers a well-defined need. (The same is true of the Craigslist example in Figure
3-14 at the top of the pattern.)

Figure 3-15. A menu page from MIT’s website

The AIGA website contains many resources for design professionals. The site presents
several top-level categories for those resources, as shown in the global navigation, but the
landing page for each of those categories is a Menu Page (Figure 3-16). The articles are
shown with thumbnail images and summary text; the rich format gives the viewer enough
of a context to decide whether to invest time in clicking through to the article.

The Patterns  93 

Figure 3-16. A Menu Page from AIGA’s website

Last, the Museum of Modern Art uses large images and little text on this Menu Page (see
Figure 3-17). This page is intriguing enough to hook a user on its own, without featuring
any particular content at all.

Figure 3-17. A Menu Page from MoMA’s website

94  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

In other libraries

The Directory Navigation pattern at the following URL describes one specialized use of
a Menu Page:

http://welie.com/patterns/showPattern.php?patternID=directory

Pyramid

Figure 3-18. Pyramid schematic

What

Link together a sequence of pages with Back/Next links. Create a parent page that links
to all of the pages in this sequence, and let the user view them either in sequence or out
of order.

Use when

The site or application contains a sequence of items that a user would normally view one
after another, such as a slideshow, a wizard, chapters in a book, or a set of products. Some
users would rather view them one at a time and out of order, however, and they need to
be able to pick from a full list of the items.

Almost all Picture Managers (see Chapter 2) use a Pyramid navigational model. Sometimes
people need to look at pictures individually; sometimes they would rather browse by
walking through the whole sequence. Pyramids support both use cases.

Why

This pattern reduces the number of clicks it takes to get around. It improves navigation
efficiency, and it expresses a sequential relationship among the pages.

Back/Next (or Previous/Next) links or buttons are all well and good. People know what to
do with them. But a user doesn’t necessarily want to be locked into a page sequence that
he can’t easily get out of: having gone seven pages in, will he need to click the Back button
seven times to get back where he started? Not fun!

http://welie.com/patterns/showPattern.php?patternID=directory

The Patterns  95 

By putting a link back to the parent page on each sequence page, you increase the user’s
options. You’ve now got three main navigation options instead of two—Back, Next, and
Up. You haven’t made it much more complex, but a casually browsing user (or one who’s
changed his mind in midstream) will need far fewer clicks to go where he wants to go. It’s
more convenient for users.

Likewise, chaining together a set of unconnected pages is kind to users who actually want
to see all the pages. Without the Back/Next links, they would be “pogo sticking” to the
parent page all the time; they might just give up and leave.

How

List all the items or pages, in order, on the parent page. Render the list in a way that suits
the types of items you’re dealing with (see Chapter 5), such as a Thumbnail Grid for photos,
or a rich text list for articles. A click on an item or link brings the user to that item’s page.

On each item page, put Back/Next links. Many sites show a small preview of the next item,
such as its title or a thumbnail (Flickr does this, as shown in Figure 3-19). In addition, put
in an Up link to bring the user back to the parent page, and label it with “Back to <Page
Title Here>” or something similar.

One Pyramid variation turns a static linear sequence into a loop by linking the last page
back to the first without going back to the parent. This can work, but does the user know
she’s looped all the way back around? Does she recognize the first page in the sequence?
Not necessarily. If the order of a sequence is important, you should link the last page to
the parent page, since it tells the user that she’s seen all there is to see.

Examples

Flickr’s item page is a classic Pyramid example. This Picture Manager shows pictures in a
sequence called a photostream, which can be seen in its entirety by clicking the labeled
link at the top of this widget (see Figure 3-19). The two thumbnails show the previous and
next pictures in the photostream.

Figure 3-19. Flickr

The New York Times interactive feature shown in Figure 3-20 is another Picture Manager.
The parent page shows an irregular Thumbnail Grid of clickable pictures; the item page
(shown in Figure 3-21) contains arrow buttons to traverse the series of photos. Note that

96  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

this shows the user where she is in the sequence—“121 of 176”—which is a nice touch.
There is no “Up” button, but the only other control in that panel, “Close,” returns the user
to the parent page. (It thus makes an interesting use of a Modal Panel.)

Figure 3-20. A New York Times interactive feature; this is the parent page, where all the photos are
shown

Figure 3-21. A child page from the same feature, showing Back, Next, and Close buttons near the photo

The Patterns  97 

Modal Panel

Figure 3-22. Modal Panel schematic

What

Show only one page, with no other navigation options, until the user finishes the immedi-
ate task.

Use when

The app or site has gotten into a state from which it shouldn’t or can’t proceed without
input from the user. In a document-centric application, for instance, a “save” action might
need the user to supply a filename if one wasn’t already given. In other contexts, the user
may need to sign in before proceeding, or acknowledge an important message.

If the user simply initiates a minor action that may need further input, try to find a way
to ask for that input without a modal panel. You could show a text field right below the
button that the user clicked, for example, and leave it “hanging” there until the user comes
back to it—there’s no need to hold up the whole site or app until that input is given. Let the
user do something else, and then return to the question at a later time.

Why

A modal panel cuts off all other navigation options from the user. He can’t ignore it and
go somewhere else in the app or site: he must deal with it here and now. When that’s done,
he gets sent back to where he was before.

It’s an easy model to understand—and to program—though it was overused in appli-
cations of past years. A modal panel is disruptive. If the user isn’t prepared to answer
whatever the modal panel asks, it interrupts his workflow, possibly forcing him to make
a decision about something he just doesn’t care about. But when used appropriately, a
modal panel channels the user’s attention into the next decision that he needs to make.
There are no other navigation possibilities to distract him.

98  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

How

In the same space on the screen where the user’s attention lies, place a panel, dialog box,
or page that requests the needed information. It should prevent the user from bringing up
other pages in that application. This panel ought to be relatively uncluttered, in keeping
with the need to focus the user’s attention onto this new task with minimal distractions.

Remember that this is a navigation-related pattern. You should carefully mark and label
the ways out, and there shouldn’t be many of them; one, two, or maybe three. In most
cases, they are buttons with short, verbish labels, such as “Save” or “Don’t save.” There is
usually a “Close” or “X” button in the upper right. Upon clicking a button, the user should
be taken back to the page he came from.

The lightbox effect is a very effective visual presentation of a modal panel. By dimming
most of the screen, the designer highlights the bright modal panel and focuses attention
on it. (For this to work, the modal panel needs to be large enough for the user to find it
effortlessly. I’ve seen modal panels that were so small and off-center that it was hard to
find them in a large browser window.)

Instead of layering a modal panel on top of another page, some websites simply use
pages with extremely limited navigation. Sign-in and registration screens are commonly
done this way: global and local navigation are stripped out, and all that’s left are the exits
(Cancel, Continue, etc.) and an Escape Hatch.

Operating systems and GUI platforms usually offer OS-level modal dialog boxes. These
are best used in traditional desktop applications—websites should avoid them in favor
of lighter-weight overlay techniques, which are easier for the designer to control and less
disruptive to the user.

Examples

SlideShare uses a lightbox to draw attention to its login dialog. If you try to do something
on SlideShare that requires you to be signed in, the modal panel in Figure 3-23 appears.
There are only three ways to deal with it: sign in, register, or click the familiar “X” button
in the upper-right corner. This is very typical of many lightbox-highlighted modal panels
on the Web.

The Patterns  99 

Figure 3-23. SlideShare’s login modal panel

Likewise, Kayak uses a similar lightbox for a modified search—but this one actually points
to the link that launched it, which helps the user connect her gesture with the resultant
modal panel (see Figure 3-24). It’s a nice touch.

Figure 3-24. Kayak’s modal panel for modifying searches

The “shade” form of a Mac modal dialog box draws attention to itself as it drops down from
the window title bar (animated, of course). These and other application-level modal dialogs
actually prevent the user from interacting with the rest of the application, so the user is forced
to finish or dismiss this thread of work before doing anything else (see Figure 3-25).

100  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-25. A modal panel in a Mac application

In other libraries

http://quince.infragistics.com/Patterns/Modal%20Panel.aspx

http://patternry.com/p=overlay/

See also the Dialog Overlay pattern in Designing Web Interfaces by Bill Scott and Theresa
Neil (O’Reilly, http://oreilly.com/catalog/9780596516253/). Other types of overlays are de-
scribed in that chapter as well.

Deep-linked State

http://

Figure 3-26. Deep-linked State schematic

http://quince.infragistics.com/Patterns/Modal Panel.aspx
http://patternry.com/p=overlay/

The Patterns  101 

What

Capture the state of a site or app in a URL that can be saved or sent to other people. When
loaded, it restores the state of the app to what the user was seeing.

Use when

The site or app’s content is something large and interactive, such as a map, book, video,
or information graphic. A specific desired point or state might be hard to find, or it may
take many steps to get there from a typical starting point. The app may have many user-
settable parameters or states, such as viewing modes, scales, data layers, and so on—these
may add to the complexity of finding a particular point and seeing it in the “right” way.

Why

Deep-linked State gives the user a way to jump directly to a desired point and application
state, thus saving time and work. It behaves like a “deep link” directly into a piece of con-
tent on a conventional site—or a permalink to a blog entry—in the sense that you end up
with a URL pointing directly to the desired content. But it can be more complex than a
permalink, because it can capture both application state and content position.

This pattern is useful for saving a state that the user might want to re-create later, especially if
he can “bookmark” it using well-known mechanisms (like browser bookmarks, sites such as
Delicious, etc.). It’s also handy for sharing with other people, and that’s where it really shines.
A URL representing a Deep-linked State can be emailed, tweeted, posted to a social network,
discussed in a forum, published in a blog entry, and talked about in any number of ways. It
might make a statement, or go viral, or become a “socially mediated object.”

How

Track the user’s position in the content, and put that into a URL. Track supporting data
there as well—comments, data layers, markers, highlighting, and so on—so that reloading
the URL will bring it all back.

Consider what other parameters or interface states you might want users to save: zoom levels,
magnification, viewing modes, search results, and so on. Not all of these should necessar-
ily be captured, since loading the Deep-linked State shouldn’t trample on settings that a user
doesn’t want changed. Work carefully through some usage scenarios to figure this out.

102  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

URLs are the best format for saving Deep-linked States: they are universally understood,
portable, short, and supported by a vast variety of tools, such as bookmarking services.
(If you’re dealing with nonweb applications, you may need to be more creative.) Other
formats can also be used, such as XML; a text-based format is generally much easier to
manage than a binary format.

As a user moves through the content and changes various parameters, immediately put
the updated URL in the browser’s URL field so that it can be easily seen and captured.
Not everyone will think to find it there, so you might also design a “Link” feature whose
existence tells the user, “Here’s how you create a link to this screen.” Some sites offer to
generate a JavaScript fragment that not only captures position and state, but also lets users
embed the whole thing into another website.

Examples

Google Books captures a large amount of state in its URLs (see Figure 3-27): the posi-
tion in the book, the viewing mode (single page, two-up, thumbnails), the presence of
toolbars, and even search results. It does not capture magnification level, which makes
sense, as that’s a very individual setting. The URL as seen in the “Link” tool is actually
redundant—the URL shown by the browser itself is exactly the same.

Figure 3-27. Deep-linked State in Google Books, found in two places: the browser’s URL field, and the
“Link” feature

Many Eyes, the visualization tools published by IBM, gives visitors the ability to put together
their own custom information graphics, based on plot types and data sets offered by the site
(see Figure 3-28). They’re highly interactive and rich. To share one of these visualizations,
you can either generate JavaScript for it (for embedding), or create a snapshot image.

The Patterns  103 

Figure 3-28. Capturing the state of a visualization at Many Eyes

Its interface doesn’t advertise it, but YouTube lets you put a timestamp into the URL for a
video. When loaded, this brings the viewer directly to the specified time in the video. The
site http://youtubetime.com explains how to do it (see Figure 3-29): add #t=XmYs to the end
of the URL, where X is the number of minutes and Y the number of seconds.

Figure 3-29. YouTubeTime’s explanation of how to use the URL to deep-link into the middle of a video

http://youtubetime.com

104  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Escape Hatch

Figure 3-30. Escape Hatch schematic

What

On each screen that has limited navigation options, place a button or link that clearly gets
the user out of that screen and back to a known place.

Use when

You’ve got pages that constitute some sort of serial process, such as a wizard, or any pages
that lock the user into a limited navigation situation, such as a Modal Panel. These might
be pages that users can reach out of context, as they could do via search results.

(Escape Hatches sometimes aren’t necessary when you have Sequence Maps or Breadcrumbs
on a page. Users who understand them can use those to get back to some known place.)

Why

Limited navigation is one thing, but having no way out is quite another! If you give the
user a simple, obvious way to escape from a page, no strings attached, he’s less likely to
feel trapped there.

This is the kind of feature that helps people feel like they can safely explore an app or site.
It’s sort of like an undo feature—it encourages people to go down paths without feeling
like they’re committing to them. See the Safe Exploration pattern in Chapter 1.

Now, if these are pages that users can reach via search results, it’s doubly important that
Escape Hatches be put on each page. Visitors can click these to get to a “normal” page that
tells them more about where they actually are.

How

Put a button or link on the page that brings the user back to a “safe place.” This might be
a home page, a hub page in a hub-and-spoke design, or any page with full navigation and
something self-explanatory on it. Exactly what it links to will depend upon the applica-
tion’s design.

The Patterns  105 

Examples

Websites often use clickable site logos as home-page links, usually in the upper left of a
page. These provide an Escape Hatch in a familiar place, while helping with branding.

In some dialogs, a Cancel button or the equivalent can serve this purpose. These also let
the user say, “I’m done with this; forget I ever started it.”

Have you ever called a company—say, your bank—and had to work your way through a
set of phone menus? They can be long, confusing, and time-consuming. If you find your-
self in the wrong menu, you may just hang up and try again from the top. But many phone
menu systems have a hidden Escape Hatch that they don’t tell you about: if you dial “0” at
any point, you might be connected to a human operator.

Many websites have certain pages that limit navigation options, such as Modal Panels and
pages without global navigation. The Netflix login screen is one example. If a user finds
herself here and doesn’t want to log in, she can click on the Netflix logo to go back to the
home page (see Figure 3-31).

Figure 3-31. Netflix sign-in page, with the logo as an Escape Hatch

Sometimes literalism works. Google Labs offers features that aren’t ready for release, and
they occasionally break. In the example shown in Figure 3-32, Google Maps gives the user
an explicit “escape hatch” URL to use when things go wrong.

Figure 3-32. Google Maps Labs Escape Hatch

106  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

In other libraries

These two patterns are named “Home Link.” The concept is very similar to Escape Hatch.

http://ui-patterns.com/patterns/HomeLink

http://welie.com/patterns/showPattern.php?patternID=home

Fat Menus

Figure 3-33. Microsoft’s All Products menu

What

Display a long list of navigation options in drop-down or fly-out menus. Use these to
show all the subpages in site sections. Organize them with care, using well-chosen catego-
ries or a natural sorting order, and spread them out horizontally.

Use when

The site or app has many pages in many categories, possibly in a hierarchy with three or
more levels. You want to expose most of these pages to people casually exploring the site,
so they can see what’s available. Your users are comfortable with drop-down menus (click
to see them) or fly-outs (roll over them with the pointer).

http://ui-patterns.com/patterns/HomeLink
http://ui-patterns.com/patterns/HomeLink
http://welie.com/patterns/showPattern.php?patternID=home

The Patterns  107 

Why

Fat Menus make a complex site more discoverable. They expose many more navigation
options to visitors than they might otherwise find.

By showing so many links on every page, you make it possible for a user to jump directly
from any subpage to any other subpage (for most subpages, anyhow). You thus turn a
multi-level site—where subpages aren’t linked to the subpages in other site sections—into
a fully connected site.

Fat Menus are a form of progressive disclosure, an important concept in user interface de-
sign. Complexity is hidden until the user asks to see it. A visitor to a site that uses these
can look over the menu headings to get a high-level idea of what’s there, and when he’s
ready to dive in, he can open up a Fat Menu with a gesture. He isn’t shown millions of sub-
pages before he’s ready to deal with them.

If you’re already using menus in your global navigation, you might consider expanding
them to Fat Menus if surfacing more links makes the content more attractive to casual
browsers. People won’t have to drill down into categories and subcategories of your site
hierarchy in order to discover interesting pages—they’ll see them there, right up front.

How

On each menu, present a well-organized list of links. Arrange them into Titled Sections
(Chapter 4) if they fit into subcategories; if not, use a sorting order that suits the nature of
the content, such as an alphabetical or time-based list.

Use headers, dividers, generous whitespace, modest graphic elements, and whatever else
you need to visually organize those links. And take advantage of horizontal space—you
can spread the menu across the entire page if you wish. Many sites make excellent use
of multiple columns to present categories. If you make the menu too tall, it might go
right off the end of the browser page. (The user controls how tall the browser is; guess
conservatively.)

The best sites have Fat Menus that work stylistically with the rest of the site. Design them
to fit well into the color scheme, grid, and so on of the page.

Some menu implementations don’t work well with accessibility technology such as screen
readers. Ensure that your Fat Menus can work with these. If they can’t, consider switching
to a more static strategy, such as a Sitemap Footer.

Examples

The Fat Menus on the Starbucks website are very well designed (see Figure 3-34). Each
menu is a different height but the same width, and follows a strict common page grid
(they’re all laid out the same way). The style blends in with the site, and the generous
whitespace makes it easy to read. Ads are worked into the design, but not obnoxiously.
The nonrectangular shape adds a polished look.

108  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-34. Starbucks coffee menu

As shown in Figure 3-35, Slate’s menus are less readable and more crowded (in keeping
with the overall style of the site). These don’t take full advantage of horizontal space,
either. But the idea of using them to show featured articles is clever—the knowledgeable
user can skim a large number of headlines by rolling over the menus.

Figure 3-35. Slate’s News & Politics menu

The Patterns  109 

The American Red Cross doesn’t merely float its menus over the top of the page (see
Figure 3-36). When the user rolls over any top-level menu item, the resultant Fat Menu
actually replaces a carousel-style rotating news panel, taking its space in the page. The
menu is the same for all the top-level menu items, so all the subpages in every category
are visible at once.

Figure 3-36. The American Red Cross menus (all of them)

WebMD uses an alphabetical sorting order for its long, flat list of health topics, as shown
in Figure 3-37.

Figure 3-37. WebMD’s Health A–Z menu

110  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Sitemap Footer

Figure 3-38. Whole Foods footer

What

Place a site map into the footer of every page in a site. Treat it as part of the global naviga-
tion, complementary to the header. Abridge the site map if you need to make it fit into a
compact space.

Use when

The site you’re designing uses a generous amount of space on each page, and you don’t
have severe constraints on page size or download time. You don’t want to take up too
much header or sidebar space with navigation.

The site has more than a handful of pages, but not an outrageously large number of cat-
egories and “important” pages (things that users will look for). You can fit a reasonably
complete site map—at least for pages that aren’t in the header—into a strip no taller than
about half of a browser window.

There may be a global navigation menu in the page header, but it doesn’t show all levels
in the site hierarchy—maybe it only shows the top-level categories. You prefer a simple,
well-laid-out footer instead of Fat Menus, perhaps because of implementation ease or ac-
cessibility issues.

Why

Sitemap Footers make a complex site more discoverable. They expose many more naviga-
tion options to visitors than they might otherwise have.

By showing so many links on every page, you make it possible for a user to jump directly
from any subpage to any other subpage (or major page, anyhow). You thus turn a multi-
level site—where subpages aren’t linked to the subpages in other site sections—into a fully
connected site. The footer is where the user’s attention lands when she reads to the end of a
page. By placing interesting links there, you entice the user to stay on the site and read more.

The Patterns  111 

Finally, showing users the whole site map gives them a strong sense of how the site is con-
structed and where they might find relevant features. In complex sites, that could be valuable.

You may find yourself trying to choose between a Sitemap Footer design and a Fat Menus
design. In conventional websites, a Sitemap Footer would be easier to implement and
debug because it doesn’t depend on anything dynamic: instead of showing fly-out menus
when the user rolls over items or clicks on them, a Sitemap Footer is just a set of static links.
It’s also easier to use with screen readers and it doesn’t require fine pointer control, so it
wins on accessibility as well.

On the other hand, the footer may be ignored by busy or casual users who focus only on
the page content and the headers. Usability-test if you have any doubts, and watch the
click metrics to see if anyone even uses the Sitemap Footer.

How

Design a page-wide footer that contains the site’s major sections (categories) and their
most important subpages. Include utility navigation, tools such as language choice or
Social Links (Chapter 9), and other typical footer information such as copyright and pri-
vacy statements.

This might constitute a complete site map for your site, or it might not. The idea is to cover
most of what visitors need to find, without overloading the header or sidebar navigation.

In practice, what often happens is that the global navigation options at the top of the
page reflect a more task-oriented design—it tries to answer visitors’ immediate questions
regarding “What is this about?” and “Where do I find X right this second?” Meanwhile,
the Sitemap Footer shows the actual hierarchical structure of the site itself. This two-part
arrangement appears to work well.

If your site deals with content that itself requires complex navigation—such as a large set
of products, news articles, music, videos, books, and so on—you could use the top of the
page for content navigation and the Sitemap Footer for almost everything else.

Here are some features that can often be found in Sitemap Footers:

•	 Major content categories

•	 Information about the site or organization

•	 Partner or sister sites—for example, sites or brands owned by the same company

•	 Community links, such as forums

•	 Help and support

•	 Contact information

•	 Current promotions

•	 Donation or volunteer information, for nonprofits

112  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Examples

REI’s website demonstrates the difference between task-oriented top-of-page global navi-
gation and an effective Sitemap Footer (see Figure 3-39). Shopping, learning, and travel
dominate the header, as they should—these are what most site visitors come for. The
footer handles secondary tasks that are nevertheless important: “about” information, cus-
tomer support, membership, and so on.

Figure 3-39. REI header and footer

The Los Angeles Times footer shows much of the same content as the double tab in the
header, but flattened and organized somewhat differently (see Figure 3-40).

The Patterns  113 

Figure 3-40. Los Angeles Times header and footer

The Wall Street Journal has an immense footer (see Figure 3-41). This is probably larger
than you’ll want to make yours.

Figure 3-41. Wall Street Journal footer

114  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Flickr, as always, is minimalist (see Figure 3-42). It eschews the column structure that
most other sites use for their Sitemap Footers, and uses rows instead. MapQuest uses col-
umns, but it also does a lovely job in a small amount of space (see Figure 3-43).

Figure 3-42. Flickr footer

Figure 3-43. MapQuest footer

In other libraries

http://welie.com/patterns/showPattern.php?patternID=sitemap-footer

http://ui-patterns.com/patterns/FatFooter

The name “Fat Footer” has sometimes been used for this pattern, with a slightly expanded def-
inition. For some wonderful examples, see the Smashing Magazine article titled “Informative
and Usable Footers in Web Design”:

http://www.smashingmagazine.com/2009/06/17/informative-and-usable-footers-in-web-
design/

http://welie.com/patterns/showPattern.php?patternID=sitemap-footer
http://ui-patterns.com/patterns/FatFooter
http://ui-patterns.com/patterns/FatFooter

The Patterns  115 

Sign-in Tools

Figure 3-44. Flickr sign-in tools

What

Place utility navigation related to a signed-in user’s site experience in the upper-right
corner. Show tools such as shopping carts, profile and account settings, help, and sign-out
buttons.

Use when

Sign-in Tools are useful for any site or service where users often sign in.

Why

This pattern is purely convention; the upper-right corner is where many people expect
such tools to be, so they will often look there. Give users a successful experience by put-
ting these tools where they expect them to be.

How

Reserve space near the upper-right corner of each page for Sign-in Tools. Place the user’s
sign-in name there first (and possibly a small version of her avatar, if it exists), unless the
name and avatar are already present elsewhere on the page. Make sure each tool works
exactly the same on every page in the site or app.

Cluster together tools such as the following:

•	 Sign-out button or link (this is important, so make sure it’s here)

•	 Account settings

•	 Profile settings

•	 Site help

116  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

•	 Customer service

•	 Shopping cart

•	 Personal messages or other notifications

•	 A link to personal collections of items (e.g., image sets, favorites, or wish lists)

•	 Home

Don’t make this space too large or loud, lest it dominate the page—it shouldn’t. This is
utility navigation; it’s there when a user needs it, but is otherwise “invisible” (well, not
literally). For some items, you can use small icons instead of text—shopping carts, mes-
sages, and help all have standard visuals you can use, for instance. See the examples in this
pattern for some of them.

The site search box is often placed near the Sign-in Tools, although it needs to be in a con-
sistent spot regardless of whether anyone is signed in.

When no user is signed in, this area of the page can be used for a sign-in box—name,
password, call to action, and possibly tools for retrieval of forgotten passwords.

Examples

Figure 3-45 shows an assortment of Sign-in Tools from Mint, Twitter, Amazon, and Gmail.
These are visually unobtrusive, but findable simply because they’re in the correct corner
of the page or window.

Figure 3-45. Clockwise from top left: Mint, Twitter, Amazon, and Gmail

Scribd uses almost all of the tools listed in this pattern (see Figure 3-46). Since there are
so many of them, a drop-down menu seems appropriate to keep them from cluttering the
corner of the page. iTunes also uses a drop down (see Figure 3-47).

The Patterns  117 

Figure 3-46. Scribd sign-in tools

Figure 3-47. iTunes sign-in tools

118  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Sequence Map

Figure 3-48. Hanna Andersson order sequence map

What

On each page in a sequence, show a map of all the pages in order, including a “You are
here” indicator.

Use when

You design a written narrative, a process flow, a Wizard, or anything else through which a
user progresses page by page. The user’s path is mainly linear.

If the navigation topology is large and hierarchical (as opposed to linear) you may want to
consider using Breadcrumbs instead. If you have a large number of steps or items and their
order doesn’t matter much, this morphs into a Two-Panel Selector (Chapter 5) or Overview
Plus Detail (Chapter 7).

Why

Sequence Maps tell a user how far he’s come through a series of steps—and, more im-
portantly, how far he has yet to go before he’s finished. Knowing this helps him decide
whether to continue, estimate how long it will take, and stay oriented.

Sequence Maps also serve as navigational devices. If someone wants to go back to a previ-
ously completed step, he can do so by clicking that step in the map.

How

Near an edge of the page, place a small map of the pages in the sequence. Make it one line
or column if you can, to keep it from competing visually with the actual page content.
Give the current page’s indicator some special treatment, such as making it lighter or
darker than the others; do something similar with the already-visited pages.

For the user’s convenience, you might want to put the map near or next to the main navi-
gation controls, usually Back and Next buttons.

The Patterns  119 

How should you label each page’s indicator on the map? If the pages or steps are num-
bered, use the numbers—they’re short and easy to understand. But you should also put
the page titles in the map. (Keep the titles short, so the map can accommodate them.) This
gives the user enough information to know which pages to go back to, and anticipate what
information he’ll need in upcoming pages.

Examples

The slideshow shown in Figure 3-49 has a Sequence Map at the bottom. It allows viewers
to move somewhat randomly through the images, though most users will probably use
the Prev and Next buttons at the top.

Figure 3-49. Boston Globe slideshow, with sequence map under photo

The Mini Cooper product configurator (see Figure 3-50) is a cross between a Settings
Editor and a Wizard in that it lets the user move back and forth at will, but organizes the
pages in a numbered sequence. The Sequence Map at the top is a critical control for “play-
ing” with the app, for moving among the various pages and exploring different options.

Installation wizards usually require a lot of steps. The one shown in Figure 3-51, from
Adobe, has a typical Sequence Map on the lefthand side. Its steps are disabled when they’re
irrelevant or bypassed, such as this trial installation that has no Adobe ID.

120  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-50. Mini Cooper product configurator, with sequence map in upper left

Figure 3-51. Adobe CS5 installer, with sequence map at left

In other libraries

http://ui-patterns.com/patterns/StepsLeft

http://developer.yahoo.com/ypatterns/navigation/bar/progress.html

http://ui-patterns.com/patterns/StepsLeft
http://ui-patterns.com/patterns/StepsLeft
http://developer.yahoo.com/ypatterns/navigation/bar/progress.html

The Patterns  121 

Breadcrumbs

Figure 3-52. Target breadcrumbs

What

On each page in a deep navigational hierarchy, show a list of all the parent pages, up to
the main or home page.

Use when

Your application or site has a hierarchical structure with two or more levels. Users move
around via direct navigation, browsing, filtering, searching within the site, or deep-linking
into it from elsewhere. Global navigation alone isn’t sufficient to show a “You are here”
signpost, because the hierarchy is too deep or large.

Alternatively, your site or app may have a set of browsing and filtering tools for a large data
set, such as products being sold online. The products are categorized in a hierarchy, but
that categorization doesn’t necessarily match the way people will look for those products.

Why

Breadcrumbs show each level of hierarchy leading to the current page, from the top of the
application all the way down. In a sense, they show a single linear “slice” of the overall map
of the site or app.

So, like a Sequence Map, Breadcrumbs help a user figure out where he is. This is especially
handy if he’s jumped abruptly to somewhere deep in the tree, as he would by following
search results or a faceted browsing tool. Unlike a Sequence Map, though, Breadcrumbs
don’t tell the user where he’s headed next. They deal only with the present.

Some texts tell you that Breadcrumbs—so named for the Hansel and Gretel story, in which
Hansel drops breadcrumbs on a forest trail to mark his way home—are most useful for
telling the user how he got to where he is from the top of the site or app. But that’s only
true if the user has drilled straight down from the top, with no sidetracking, or following
other branches, or dead ends, or searching, or linking directly from other pages…not
likely.

122  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Instead, Breadcrumbs are best for telling you where you are relative to the rest of the app
or site—it’s about context, not just history. Look at the Target example in Figure 3-52.
Faceted browsing—searching for items with certain characteristics—brought me to this
page deep in the Target website. (A keyword search could have done the same.) But now
that I’m here, I can see where I am in the product hierarchy and I know what else I can
look at. I can use the Breadcrumbs to look at all of Target’s stand mixers and do some com-
parison shopping.

Finally, Breadcrumbs are usually clickable links or buttons. This turns them into a naviga-
tional device in their own right.

How

Near the top of the page, put a line of text or icons indicating the current level of hierarchy.
Start with the top level; to its right, put the next level and so on down to the current page.
Between the levels, put a graphic or text character to indicate the parent/child relationship
between them. This is usually a right-pointing arrow, triangle, greater-than sign (>), slash
(/), or right angle quotes (»).

The labels for each page should be the page titles. Users should recognize them if they’ve
been to those pages already; if not, the titles should at least be self-explanatory enough to
tell the user what those pages are about. The labels should be links to those pages.

Some Breadcrumbs show the current page as the last item in the chain; some don’t. If yours
do, make them visually different from the rest of the items, since they’re not links.

Examples

The Windows 7 control panel is a hierarchical Settings Editor that can be three lev-
els deep. The screenshot in Figure 3-53 shows the Personalization settings within the
Appearance and Personalization category (which has at least six subcategories in addition
to Personalization).

Figure 3-53. Windows 7 control panel

The Patterns  123 

Online communities such as the one shown in Figure 3-54 often have deep hierarchies:
forum categories, forums, subforums, yet more subforums, and threads. Breadcrumbs help
users understand and traverse this hierarchy.

Figure 3-54. Mothering.com forums

Figure 3-55 shows an example of Breadcrumbs used outside a “page” context. The Chrome
developer tools, among many other such tools for software developers, provide a way for
users to manage very deep hierarchical structures (in this case, nested structural tags in
an HTML page). Breadcrumbs are invaluable here for keeping track of where one is in that
structure.

Figure 3-55. Chrome developer tools

In other libraries

http://developer.yahoo.com/ypatterns/navigation/breadcrumbs.html

http://ui-patterns.com/patterns/Breadcrumbs

http://www.welie.com/patterns/showPattern.php?patternID=crumbs

http://patternry.com/p=breadcrumbs/

http://quince.infragistics.com/Patterns/Breadcrumbs.aspx

http://www.smashingmagazine.com/2009/03/17/breadcrumbs-in-web-design-examples-
and-best-practices-2/

http://developer.yahoo.com/ypatterns/navigation/breadcrumbs.html
http://developer.yahoo.com/ypatterns/navigation/breadcrumbs.html
http://ui-patterns.com/patterns/Breadcrumbs
http://ui-patterns.com/patterns/Breadcrumbs
http://www.welie.com/patterns/showPattern.php?patternID=crumbs
http://patternry.com/p=breadcrumbs/
http://patternry.com/p=breadcrumbs/
http://quince.infragistics.com/Patterns/Breadcrumbs.aspx
http://www.smashingmagazine.com/2009/03/17/breadcrumbs-in-web-design-examples-and-best-practices-2/
http://www.smashingmagazine.com/2009/03/17/breadcrumbs-in-web-design-examples-and-best-practices-2/

124  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Annotated Scrollbar

Figure 3-56. MSNBC scrollbar showing page sections

What

Make the scrollbar serve double-duty as a map of the content, or as a “You are here”
indicator.

Use when

You’re designing either a document-centric application or a pan-and-zoom interface,
such as a map or large visualization. Users will scan this document or graphic for items of
note, such as specific page numbers or landmarks. They might have trouble keeping track
of where they are and where to go next as they scroll.

The Patterns  125 

Why

Even though the user remains within one navigational space as she scrolls through the
content, signposts are still useful. When scrolling quickly, it’s really hard to read the text
flying by (or impossible, if the screen can’t refresh quickly enough), so some other indica-
tor of position is necessary. Even if she stops briefly, the part of the document she can see
may not contain anything she can orient herself by, like headers.

Why a scrollbar? Because that’s where the user’s attention is focused. If you put signposts
there, the user will see them and use them as she scrolls, rather than trying to look at two
different screen areas at once. You can put signposts close to the scrollbar and still get the
same effect; the closer, the better.

When the scrollbar shows indicators in the scrollbar track itself, you get something that
behaves just like a one-dimensional Overview Plus Detail (Chapter 7). The track is the over-
view; the scrolled window is the detail.

How

Put a position indicator on or near the scrollbar. Either static or dynamic indicators might
work—static indicators are those that don’t change from second to second, such as blocks
of color in the scrollbar track (see the tkdiff screenshot in Figure 3-57). Make sure their
purpose is clear, though; such things can baffle users that aren’t used to seeing graphics
in the scrollbar track!

Dynamic indicators change as the user scrolls, and they are often implemented as tool
tips. As the scroll position changes, the tool tip shown next to the scroll thumb changes
to show information about the content there. This will vary with the nature of the appli-
cation. Microsoft Word, for instance, puts page numbers and headers in these tool tips.

In either case, you’ll need to figure out what a user will most likely be looking for, and
thus what you need to put into the annotations. The content structure is a good starting
point. If the content is code, you might show the name of the current function or method;
if it’s a spreadsheet, show the row number, and so on. Also consider whether the user is
currently performing a search—the scrollbar annotation should show where the search
results are in the document.

Examples

The tkdiff application shown in Figure 3-57 visually highlights the differences between
two versions of a text file: newly added sections are marked in green, changed sections are
in blue, and deleted sections are in red. An Annotated Scrollbar serves as an overall map,
thus making large file “diffs” easier to comprehend.

126  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-57. tkdiff

Chrome annotates its scrollbar with search results (see Figure 3-58). When you search for
a word on a web page, Chrome highlights the found words on the page with yellow, and
places a yellow indicator in the scrollbar wherever they are found. This way, the user can
scroll directly to those points in the document.

Figure 3-58. Chrome “Find” results

In other libraries

http://quince.infragistics.com/Patterns/Annotated%20Scrollbar.aspx

http://quince.infragistics.com/Patterns/Annotated Scrollbar.aspx

The Patterns  127 

Animated Transition

Figure 3-59. Mac OS dock transition

What

Smooth out a startling or dislocating transition with an animation that makes it feel natural.

Use when

Users move through a large virtual space, such as an image, spreadsheet, graph, or text
document. They might be able to zoom in to varying degrees, pan or scroll, or rotate the
whole thing. This is especially useful for information graphics, such as maps and plots.
(See Chapter 7 for more about information graphics.)

Alternatively, the interface might have sections that can be closed and opened again, ei-
ther by the system or by the user—such as trees with closable parent nodes, standalone
windows that open and close, or an interface built with Collapsible Panels (Chapter 4).
Animated Transition might also be used when users jump from one separate page to another.

128  Chapter 3:  Getting Around: Navigation, Signposts, and Wayfinding

Why

All of these transformations can disrupt a user’s sense of where she is in the virtual space.
Zooming in and out, for instance, can throw off her spatial sense when it’s done instanta-
neously, as can rotation and the closing of entire sections that prompts a re-layout of the
screen. Even scrolling down a long page of text, when it’s jumpy, can slow down the reader.

But when the shift from one state to another is visually continuous, it’s not so bad. In other
words, you can animate the transition between states so that it looks smooth, not discon-
tinuous. This helps keep the user oriented. We can guess that it works because it more
closely resembles physical reality—when was the last time you instantly jumped from the
ground to 20 feet in the air? Less fancifully, an animated transition gives the user’s eyes a
chance to track a location while the view changes, rather than trying to find the location
again after an abrupt change.

When done well, Animated Transitions bolster your application’s cool factor. They’re fun.

How

For each type of transformation that you use in your interface, design a short animation
that “connects” the first state with the second state. For zoom and rotate, you might show
the in-between zoom or rotate levels; for a closing panel, you might show it shrinking
while the other panels expand to take up the space it leaves behind. To whatever extent
possible, make it look like something physical is happening.

But this pattern is a double-edged sword. Beware of making the user motion-sick! The
animations should be quick and precise, with little or no lag time between the user’s ini-
tiating gesture and the beginning of the animation. Limit it to the affected part of the
screen; don’t animate the whole window. And keep it short. My preference would be to
keep it well under a second, and research shows that 300 milliseconds might be ideal for
smooth scrolling. Test it with your users to see what’s tolerable.

If the user issues multiple actions in quick succession, such as pressing the down arrow
key many times to scroll, combine them into one animated action. Otherwise, the user
might sit there through several seconds’ worth of animation as the punishment for press-
ing the down arrow key 10 times. Again: keep it quick and responsive.

Some of the types of transitions listed by the Yahoo! pattern library (http://developer.yahoo.
com/ypatterns/richinteraction/transition/) and Designing Web Interfaces are as follows:

•	 Brighten and dim

•	 Expand and collapse

•	 Fade in, fade out, and cross-fade

•	 Self-healing

•	 Slide

•	 Spotlight

http://developer.yahoo.com/ypatterns/richinteraction/transition/
http://developer.yahoo.com/ypatterns/richinteraction/transition/

The Patterns  129 

In other libraries

For more discussion and tons of great examples of the Animated Transitions in the preced-
ing list, see the Transition cluster of patterns at the Yahoo! Design Pattern Library:

http://developer.yahoo.com/ypatterns/richinteraction/transition/

In addition, Scott and Neil’s Designing Web Interfaces contains an entire chapter on transi-
tions. It covers some of the same ground as the Yahoo! site, but it’s worth reading.

http://developer.yahoo.com/ypatterns/richinteraction/transition/
http://developer.yahoo.com/ypatterns/richinteraction/transition/
http://developer.yahoo.com/ypatterns/richinteraction/transition/

Chapter 4

Organizing the Page:
Layout of Page Elements

Page layout is the art of manipulating the user’s attention on a page to convey meaning,
sequence, and points of interaction.

If the word manipulating sounds unseemly to you, think about it this way. Film and tele-
vision directors make their living by manipulating your attention on the movie or TV
screen, and you are presumably a willing participant. It is the same for editors who ar-
range articles, headlines, and ads in a newspaper. If all this content were presented in a
drab monotone, with no graphic emphasis to grab and move your attention, you would
find it harder to extract meaning—what’s supposed to be important, and what’s not?

Even though it is ultimately an art, there is more rationality to good page layout than
you might think there is. Some important ideas from graphic design are explained in
this chapter introduction; each can guide you in the layout of pages, screens, and dialog
boxes. We’ll talk about visual hierarchy, visual flow and focal points, and grouping and
alignment—all predictable and rational approaches to page design. This chapter’s pat-
terns describe concrete ways to apply those high-level concepts to interface design.

But the changeable, interactive nature of computer displays makes layout easier in some
ways, harder in others. We’ll talk about why that’s true. Some of these patterns work as
well in print as they do on-screen, but most of them would be useless in print—they pre-
sume that the user will interact with the page.

132  Chapter 4:  Organizing the Page: Layout of Page Elements

The Basics of Page Layout
This section discusses several elements of page layout: visual hierarchy, visual flow, and
how to use dynamic displays.

Visual Hierarchy: What’s Important? What’s Related?
The concept of visual hierarchy plays a part in all forms of graphic design. Put simply, the
most important content should stand out the most, and the least important should stand
out the least. Also, titles ought to look like titles, subtitles ought to look like subtitles, and
lists ought to look like lists—in other words, a reader should be able to deduce the infor-
mational structure of the page from its layout.

What is the most important thing on the page you’re designing? Make that the center of
attention. Can you rank other things in declining order of importance? Arrange them on
the page in ways that draw progressively less attention; make them look less interesting.

In short, a good visual hierarchy gives instant clues about:

•	 The relative importance of page elements

•	 The relationships among them

How to make things look important
For short but large text—such as headlines and short phrases—use font size, contrasting
color, and visual weight (see Figure 4-1). You can also make text look very dramatic by
setting it off with generous whitespace or background color. Use two or more of these
characteristics at a time on emphasized text to differentiate it from body text.

Figure 4-1. Large text in a hierarchy

Blocks of smaller items—such as body text, links, or interactive tools—can be emphasized
or deemphasized with these tools. See Figure 4-2 for examples of each.

The Basics of Page Layout  133 

Density
A dense, heavy-looking block has stronger contrast with the surrounding page; an
open look has less contrast.

Background color
Contrast draws attention. Black on white, or vice versa, is the strongest contrast
possible.

Position and size
A medium or large text block, roughly in the center of the page, calls attention to it-
self as the primary content (like an article or blog post). But a small strip of text at the
bottom of the page says quietly, “I’m just a footer” and begs to be ignored!

Rhythm
Lists, grids, alternating elements such as headlines and summaries, and whitespace
separation can create a strong visual rhythm that irresistibly draws the eye.

Figure 4-2. Ways to emphasize blocks of text or small items (clockwise from upper left): density,
background color, rhythm, and position and size

Put small but important items at the top of the page, along the left side, or in the top-right
corner (see Figure 4-3). Give them high contrast and visual weight, and set them off with
whitespace. But note that in a text-heavy screen, like most websites, certain controls—es-
pecially search fields, sign-in fields, and large buttons—tend to stand out anyway! This is
less about raw visual characteristics than meaning: if someone is looking for a search box,
for instance, her eyes will go straight to the text fields on the page. (She may not even read
the labels for those text fields.)

134  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-3. Emphasizing small items

High-contrast, dramatic images draw attention; so do pictures of faces. But much of the
time, images on websites get ignored by viewers motivated to get information out of a
page or to get a task done. Pictures are a wildcard in a visual hierarchy. Use them thought-
fully, and refer to Chapter 11 for a discussion on using visual elements to communicate
branding, emotion, and other nonrational attributes.

One more thing: don’t discount “ad blindness.” Users may consciously ignore elements
that look like ads, even if those elements carry important information! Again, this is about
meaning, not visuals. If you’ve ever brought up an ad-filled web page and pointedly ig-
nored the brightly colored moving ads (so you could read the monotonous blocks of text
that you went there to read), you know that we’re not merely slaves to our hardwired vi-
sual systems! We can choose to ignore things that we think we don’t need to look at, and
zero in on what we think is the important part of the page.

How to show relationships among page elements
Grouped items look related (see Figure 4-4). Conversely, isolation implies distinction—
in the previous section, I recommended that small but important items be set off with
whitespace for this reason. This uses the Gestalt principles of proximity and closure (see
the sidebar “Four Important Gestalt Principles” on page 139).

Similar items look like peers (see Figure 4-5). If you have a few things “of a type” and you
want viewers to see them as equally interesting alternatives, give them an identical (and
distinctive) graphic treatment.

The Basics of Page Layout  135 

Is one item more “special” than the others like it? Give it a slightly different treatment,
such as a contrasting background color, but otherwise keep it consistent with the others
(see Figure 4-6). Or use a graphic element to disrupt the line along which the items are
aligned, such as a bump-out, overlap, or something at an angle.

A list of many similar items, arranged in a strong line or column, becomes a set of peer
items to be viewed in a certain order (see Figure 4-7). Align these items very precisely
with each other to create a visual line (see the Gestalt principle of continuity in the up-
coming sidebar). Examples include bulleted lists, navigation menus, text fields in a form,
row-striped tables, and lists of headline/summary pairs. Note the alternating repetition
used in the latter two examples. Alternating repetition can look beautiful when done well,
and can set up a nice visual rhythm on the page.

Figure 4-4. Grouping related items Figure 4-5. Peer items

Figure 4-6. Distinguishing one item among peers Figure 4-7. Lists of items

Indented and shrunken text tucked under a stronger element modifies that stronger element.
Image captions, secondary text, comments, and so forth all behave this way (see Figure 4-8).

136  Chapter 4:  Organizing the Page: Layout of Page Elements

Containment implies a parent/child relationship (see Figure 4-9). Use boxes, blocks of
background color, Module Tabs, Accordions, and text blocks or tool groups surrounded by
whitespace to contain and nest related items (see the Gestalt principle of closure in the
upcoming sidebar). Indenting also implies parent/child relationships in the context of an
outline or a hierarchical menu.

Figure 4-8. Captions and comments Figure 4-9. Containment

Visual Flow: What Should I Look at Next?
Visual flow deals with the tracks that readers’ eyes tend to follow as they scan the page.
It’s intimately related to visual hierarchy, of course—a well-designed visual hierarchy sets
up focal points on the page wherever you need to draw attention to the most important
elements, and visual flow leads the eyes from those into the less important information.
As a designer, you want to be able to control visual flow on a page so that people follow it
in approximately the right sequence.

Several forces can work against each other when you try to set up a visual flow. One is our
tendency to read top to bottom and left to right. When faced with a monotonous page of
text, that’s what you’ll do naturally; but if there are strong focal points on the page, they
can distract you from the usual progression, for better or for worse.

Focal points are the spots your eyes can’t resist going to. You tend to follow them from
strongest to weakest, and skillfully designed pages have only a few—too many focal points
dilute the importance of each one. A good visual hierarchy uses focal points to pull eyes
to the right places in the right order.

The next time you pick up a magazine, look at some well-designed ads, and notice what
your eyes gravitate toward. The best commercial graphic artists are masters at setting up
focal points to manipulate what you see first.

The Basics of Page Layout  137 

So how do you create a good visual flow? One simple way is to use implied lines, either
curved or straight, to connect elements on the page (see Figure 4-10). This creates a visual
narrative for the viewer to follow.

Figure 4-10. Implied lines for visual flow

Put calls to action after the text you want viewers to read first. If you don’t care whether
they read it or not, you can isolate the calls to action with whitespace (see Figure 4-11).

Figure 4-11. Calls to action, both in the flow and out of it

Likewise, if you’re designing a form, arrange the controls along a continuous path and
put “I’m finished” buttons (OK, Cancel, Submit, Buy, etc.) at the end of that line (see
Figure 4-12). See the patterns Right/Left Alignment and Diagonal Balance for two concrete
approaches to form layout, and Prominent “Done” Button in Chapter 6.

138  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-12. OK button at the end of a form

It’s not hard to set up a layout that flows well, but be on your guard against layout choices
that work counter to flow. If you want viewers to read a site’s story and value proposition,
arrange the critical pieces of that narrative along a continuous line, and don’t interrupt it
with eye-catching extras. If you’re designing a form or set of interactive tools, don’t scatter
controls all over the page—that just forces the user to work harder to find them.

Figure 4-13 shows a distinctly poor example of visual flow and visual hierarchy. How
many focal points are there, and how do they compete with one another? Where does
your eye want to go first, and why? What does this page say is important?

Figure 4-13. Weather Underground’s jumbled visual hierarchy

The Basics of Page Layout  139 

Four Important Gestalt Principles
The theory behind grouping and alignment was developed early in the 20th century by the
Gestalt psychologists. They described several layout properties that seem to be hardwired into
our visual systems. Among them are the following:

Proximity
Put things close together, and viewers will associate them with one another. This is the
basis for strong grouping of content and controls on a UI.

Similarity
If two things are the same shape, size, color, or orientation, for instance, viewers will also
associate them with each other.

Continuity
Our eyes want to see continuous lines and curves formed by the alignment of smaller
elements.

Closure
We also want to see simple closed forms, such as rectangles and blobs of whitespace, that
aren’t explicitly drawn for us. Groups of things often appear to be closed forms.

Figure 4-14 depicts these four layouts and shows how you can combine them to create an
effective overall design.

As important as they are individually, these principles are best used in combination with one
another. Once again, redundancy is helpful; the fifth grouping looks more like an actual page
layout than a retro-styled mosaic.

Continuity and closure, then, explain alignment. When you align things, you form a continuous
line with their edges, and the users will follow that line and (perhaps subconsciously) assume
a relationship. If the aligned items are coherent enough to form a shape—or to form one out
of the whitespace or “negative space” around it—closure is also at work, adding to the effect.

Proximity Similarity

Continuity Closure

All together now

Figure 4-14. Four Gestalt principles

140  Chapter 4:  Organizing the Page: Layout of Page Elements

Using Dynamic Displays
Everything I’ve discussed so far applies equally to UIs, websites, posters, billboards, and
magazine pages. They deal with static aspects of layout. Ah, but you have a dynamic com-
puter display to work with—and suddenly time becomes another dimension of design!
Just as importantly, computers permit user interaction with the layout to an extent that
most printed things can’t.

There are many, many ways you can take advantage of the dynamic nature of computer
displays. Consider space usage, for example—even the biggest consumer-grade computer
screens have less usable space than, say, a poster or a newspaper page. That’s life. If you
design for mobile devices, you’ve got an especially tiny space to work in. There are many
dynamic techniques for using that space to present more content than you can show at
one time.

Scrollbars, of course, are one very common way of presenting a small “viewport” onto a
large thing, such as text, an image, or a table. Scrollbars let the user move around at will,
in one or two dimensions (but refrain from using horizontal scrolling with text, please).

Or, if you can carve up the content into coherent sections, you have several options—
Module Tabs, Accordions, Collapsible Panels, and Movable Panels all put some layout control
into the user’s hands, unlike the more static Titled Sections. (You can also split up con-
tent over multiple virtual pages and let the user navigate between them; see Chapter 3.)
These patterns invoke time by letting the user see different content at different times of
his choosing.

If you want to direct the user through a sequence of steps, Responsive Enabling and
Responsive Disclosure are two time-honored ways of doing so.

The Patterns
This chapter’s patterns give you specific ways to put all these layout concepts into play.

The first three address the visual hierarchy of the whole page, screen, or window, regard-
less of the type of content you put into that page. You should consider Visual Framework
fairly early in a project, since it affects all the major pages and windows in an interface.

1.	 Visual Framework

Do you have a single important thing to show on the page, or several features or options
of similar importance? Center Stage applies to pages that contain a single main item or task
with other lesser items around it, whereas Grid of Equals makes several “peer” items look
similar. (You could use both in separate sections of a large page, of course.)

2.	 Center Stage

3.	 Grid of Equals

The Patterns  141 

The next group of patterns represents alternative ways of “chunking” content on a page
or window. They’re useful when you have more content than you can comfortably put
on the page at one time. Should the different sections all be visible at once, or can they
be viewed independently? Is it OK for users to manipulate those sections on the page, or
maybe overlook the hidden ones? These patterns deal with visual hierarchy too, but they
also involve interactivity, and they can help you choose among the specific mechanisms
available in UI toolkits.

4.	 Titled Sections

5.	 Module Tabs

6.	 Accordion

7.	 Collapsible Panels

8.	 Movable Panels

Right/Left Alignment and Diagonal Balance draw on the concepts of visual flow, alignment,
and other things discussed in the chapter introduction. They deal with the spatial rela-
tionships among the smaller, more static elements on a page, such as text and controls.

9.	 Right/Left Alignment

10.	 Diagonal Balance

The last three patterns deal with the dynamic aspects of content layout. Responsive
Disclosure and Responsive Enabling are two ways of directing a user through a series of steps
or a set of options; they indicate what can be done at any point in time, while preventing
the user from straying into areas that will get her into trouble. Liquid Layout is a technique
for arranging a page that can change size and shape at the user’s whim.

11.	 Responsive Disclosure

12.	 Responsive Enabling

13.	 Liquid Layout

Visual Framework

Figure 4-15. JAQK

142  Chapter 4:  Organizing the Page: Layout of Page Elements

What

Design each page to use the same basic layout, colors, and stylistic elements, but give the
design enough flexibility to handle varying page content.

Use when

You’re building a website with multiple pages, or a UI with multiple windows—in other
words, almost any complex software. You want it to “hang together” and look like one
thing, deliberately designed; you want it to be easy to use and navigate.

Why

When a UI uses consistent color, font, and layout, and when titles and navigational aids—
signposts—are in the same place every time, users know where they are and where to find
things. They don’t have to figure out a new layout each time they switch context from one
page or window to another.

Have you ever seen a book in which the page numbers and headings were in a different
place on each page?

A strong visual framework, repeated on each page, helps the page content stand out more.
That which is constant fades into the background of the user’s awareness; that which
changes is noticed. Furthermore, adding enough character to the design of the visual
framework helps with the branding of your website or product—the pages become rec-
ognizable as yours.

How

Draw up an overall look-and-feel that will be shared among all pages or windows. Home
pages and main windows are “special” and are usually laid out differently from inner pages,
but they should still share certain characteristics with the rest of the site. For example:

Color
Backgrounds, text colors, accent colors, and other colors

Fonts
For titles, subtitles, ordinary text, callout text, and minor text

Writing style and grammar
Titles, names, content, short descriptions, any long blocks of text, and anything else
that uses language

The Patterns  143 

All other pages or windows should also share the following, as appropriate:

•	 “You are here” signposts, such as titles, logos, Breadcrumb trails, global navigation
with indicators of the current page, and Module Tabs

•	 Navigational devices, including global and utility navigation, OK/Cancel buttons,
Back buttons, Quit or Exit buttons, and navigational patterns such as Sequence Map
and Breadcrumbs (all in Chapter 3)

•	 Techniques used to define Titled Sections

•	 Spacing and alignment, including page margins, line spacing, the gaps between labels
and their associated controls, and text and label justification

•	 Overall layout, or the placement of things on the page, in columns and/or rows, tak-
ing into account the margins and spacing issues listed previously

If you’re familiar with graphic design concepts, you may recognize some of these tech-
niques as comprising a layout grid. A layout grid is a structural template for a set of pages
or layouts. Each individual page is different, but all use specified margins and align their
contents along invisible gridlines. A good Visual Framework does indeed include a layout
grid, but it also includes other aspects of look-and-feel such as colors, visual details, and
writing style.

Implementation of a Visual Framework should force you to separate stylistic aspects of the
UI from the content. This isn’t a bad thing. If you define the framework in only one
place—such as a CSS stylesheet or a Java class—it lets you change the framework inde-
pendently from the content, which means you can tweak it and get it right more easily. (It’s
also good software engineering practice.)

Examples

JetBlue’s site employs a restricted color palette, a strong header, and consistent use of fonts
and curved rectangles in its Visual Framework (see Figure 4-16). Even the login page and
modal dialogs use these elements; they don’t look out of place.

In the same way, TED’s site uses limited color and a layout grid to maintain consistency
(see Figure 4-17). It has an interesting problem that’s more common than it might appear:
its subsidiary or related sites (such as its blog and its conference site) must look somewhat
like the main TED site, but still have distinct visual identities. In this case, the two related
sites share most of their framework elements with the TED site, with some key differences
(see Figure 4-18).

144  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-16. JetBlue website

Figure 4-17. TED website

The Patterns  145 

Figure 4-18. TED-associated websites, with related but slightly different visual frameworks

Center Stage

Figure 4-19. Flash editor

What

Put the most important part of the UI into the largest subsection of the page or window;
cluster secondary tools and content around it in smaller panels.

146  Chapter 4:  Organizing the Page: Layout of Page Elements

Use when

The page’s primary job is to show a single unit of coherent information to the user, let him
edit a document, or enable him to perform a certain task. Other content and functions
are secondary to this one. Many types of interfaces can use a Center Stage—tables and
spreadsheets, forms, and graphical editors all qualify. So do web pages that show single
articles, images, or features.

Why

The design should guide the user’s eyes immediately to the start of the most important
information (or task) rather than have them wandering over the page in confusion. An
unambiguous central entity anchors the user’s attention. Just as the lead sentence in a
news article establishes the subject matter and purpose of the article, so the entity in
Center Stage establishes the purpose of the UI.

Once that’s done, the user will assess the items in the periphery in terms of how they relate
to what’s in the center. This is easier for the user than repeatedly scanning the page, trying
to figure it out. What comes first? What’s second? How does this relate to that? And so on.

How

Establish a visual hierarchy with the primary content or document dominating every-
thing else. See the chapter introduction for a discussion of visual hierarchy. When design-
ing a Center Stage, consider these particular factors, though none of them are absolutely
required:

Size
The Center Stage content should be at least twice as wide as whatever’s in its side
margins, and twice as tall as its top and bottom margins. (The user may change its
size in some UIs, but this is how it should be when the user first sees it.) Keep the
fold in mind—when a small screen is used, where does the content get cut off at the
bottom? Make sure the Center Stage still takes up more of the above-the-fold space
than anything else.

Color
Use a color that contrasts with the items in the margins. In desktop UIs, white works
well against Windows gray, especially for tables and trees. As it happens, white often
works in web pages too, since ads and navigation bars usually use other colors as their
backgrounds; also, web users have been “trained” by convention to look for the plain
text on a white background.

Headlines
Big headlines are focal points, and can draw the user’s eye to the top of the Center
Stage. That happens in print media too, of course. See the chapter introduction and
Titled Sections for more.

The Patterns  147 

Context
What does the user expect to see when she opens up the page? A graphic editor? A long
text article? A map? A filesystem tree? Work with her preconceptions; put that in Center
Stage and make it recognizable. The user will look for it—this trumps all other rules
about visual perception. (But it doesn’t mean you can frustrate her by hiding what she’s
looking for! Some websites put their main content so far down the page that it’s below the
fold in short windows, requiring the user to scroll down to find it. That’s just sadistic.)

Notice that I didn’t mention one traditional layout variable: position. It doesn’t much matter
where you put the Center Stage—top, left, right, bottom, center, any can be made to work. If
it’s big enough, it ends up more or less in the center anyway. Note that well-established genres
have conventions about what goes into which margins, such as toolbars on top of graphic
editors, or navigation bars on the left sides of web pages. Be creative, but with your eyes open.
If you’re in doubt, take a screenshot of the layout, shrink it, blur it, and ask someone where
he thinks the main content should start. Again, see the chapter introduction for an example.

Examples

The Google Docs text editor devotes almost all of its horizontal space to the document
being edited; so does its spreadsheet editor. Even the tools at the top of the page don’t take
up a huge amount of space. The result is a clean and balanced look (see Figure 4-20).

Figure 4-20. Google Docs text editor

Text-based content such as blog articles is often crowded with too many items in the
margins. The sites for Newfangled (Figure 4-21) and Steepster (Figure 4-22) give their
main content enough space to compete with the navigation and other peripheral features.

148  Chapter 4:  Organizing the Page: Layout of Page Elements

Notice the percentage of space devoted to the main article for both of these sites, and how
high on the page the article starts.

Figure 4-21. Newfangled article

Figure 4-22. Steepster article

In other libraries

http://www.welie.com/patterns/showPattern.php?patternID=center-stage

http://www.welie.com/patterns/showPattern.php?patternID=center-stage

The Patterns  149 

Grid of Equals

Figure 4-23. Nike

What

Arrange content items in a grid or matrix. Each item should follow a common template,
and each item’s visual weight should be similar. Link to jump pages as necessary.

Use when

The page contains many content items that have similar style and importance, such as
news articles, blog posts, products, or subject areas. You want to present the viewer with
rich opportunities to preview and select these items.

Why

A grid that gives each item equal space announces that they have equal importance. The
common template for items within the grid tells the user that the items are similar to each
other. Together, these techniques establish a powerful visual hierarchy that should match
the semantics of your content.

Grids look neat, ordered, and calming. That may suit the style of your site or app.

How

Figure out how to lay out each item in the grid. Do they have thumbnail images or graph-
ics? Headlines, subheads, summary text? Links to jump pages (e.g., a page with the full
story)? Render them with more than just blocks of body text: make headlines of differ-
ent colors, be creative with whitespace, and use images if you can do so evenly across all
items. Experiment with ways to fit all the right information into a relatively small space—
tall, wide, or square—and apply that template to the items you need to display.

150  Chapter 4:  Organizing the Page: Layout of Page Elements

Now arrange the items in a grid. You could use a single row, or a matrix that’s two, three,
or more items wide. Consider page width as you do this design work—what will your de-
sign look like in a narrow window? Will most of your users have large browser windows?
What happens on tiny mobile devices?

You may choose to highlight grid items, either statically (to emphasize one item over oth-
ers) or dynamically, as a user hovers over those grid items. Use color and other stylistic
changes, but don’t change the positions, sizes, or other structural elements of the grid
items—you don’t want content jumping around as the user hovers over different items!

A related pattern is Thumbnail Grid, in Chapter 5. This is a way of rendering a list in a 2D
matrix of small pictures, perhaps with a small amount of text with each one. See also the
Thumbnail-and-Text List pattern for mobile design (Chapter 10). It’s about a single column,
not a grid, but the idea is the same: use a consistent, richly styled template for all the items
in a list.

Examples

Hulu (Figure 4-24), CNN (Figure 4-25), and Nike (Figure 4-23, shown at the top of the
pattern) use a rigid template for each item. The overall effect is rhythmic and calming.
Note how each site uses a different balance of text and imagery.

Figure 4-24. Hulu

The Patterns  151 

Figure 4-25. CNN

The examples from MapQuest (Figure 4-26) and IBM (Figure 4-27) show how to do this
with only a single row of items. (Technically it’s still a “grid.”) The consistent visual treat-
ment marks these items as peers of each other. Each item ends with one or more links—
and that’s true of the Hulu and CNN examples, too. Most of the examples I’ve seen of this
pattern use it to showcase linked content.

Figure 4-26. MapQuest

152  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-27. An inner page at IBM’s website

In other libraries

For some wonderful examples, see “15 Tips for Designing Terrific Tables,” by Joshua
Johnson:

http://designshack.co.uk/articles/css/15-tips-for-designing-terrific-tables

Titled Sections

Figure 4-28. JetBlue’s titled sections

The Patterns  153 

What

Define separate sections of content by giving each one a visually strong title, separating
the sections visually, and arranging them on the page.

Use when

You have a lot of content to show, but you want to make the page easy to scan and un-
derstand, with everything visible. You can group the content into thematic or task-based
sections that make sense to the user.

Why

Well-defined and well-named sections structure the content into easily digestible chunks,
each of which is now understandable at a glance. This makes the information architecture
obvious. (See this chapter’s introduction for a discussion of visual hierarchy, which is ba-
sically about rendering content in a way that communicates its actual structure. See also
Chapter 2 for a definition of information architecture.)

When the user sees a page sectioned neatly into chunks like this, her eye is guided along
the page more comfortably. The human visual system always looks for bigger patterns,
whether they’re deliberate or not. So, put them in deliberately!

How

First, get the information architecture right—split up the content into coherent chunks, if
it hasn’t already been done for you, and give them short, memorable names. Next, choose
a presentation:

•	 For titles, use typography that stands out from the rest of the content—bolder, wider,
larger point size, stronger color, different font family, outdented text, and so on. See
the chapter introduction for more on visual hierarchy.

•	 Try reversing the title against a strip of contrasting color.

•	 Use whitespace to separate sections.

•	 Use blocks of contrasting background color behind the entire section.

•	 Boxes made from etched, beveled, or raised lines are familiar on desktop UIs. But
they can get lost—and just become visual noise—if they’re too big, too close to each
other, or deeply nested.

154  Chapter 4:  Organizing the Page: Layout of Page Elements

If the page is still too overwhelming, try using Module Tabs, an Accordion, or Collapsible
Panels to hide some of the content.

If you’re having trouble giving reasonable titles to these chunks of content, that may be a
sign that the grouping isn’t a natural fit for the content. Consider reorganizing it into dif-
ferent chunks that are easier to name and remember. “Miscellaneous” categories may also
be a sign of not-quite-right organization, though sometimes they’re genuinely necessary.

Examples

In its account settings page, Amazon shows three levels of titles corresponding to three
levels of the visual hierarchy: the page title, section titles (Orders, Payment, Settings), and
subtitles atop lists of links (see Figure 4-29). Note the use of whitespace, boxes, and align-
ment to structure the page.

Figure 4-29. Amazon account settings

The iPhone sync utility shown in Figure 4-30 shows one nice-looking way to put very
different kinds of content into titled boxes. These sections show very little internal con-
sistency (other than typography)—they share no mutual grid, alignment, or layout plan.
But the boxes and whitespace break up the page so much that this doesn’t really matter.

The Patterns  155 

Figure 4-30. iPhone sync utility

In other libraries

http://quince.infragistics.com/Patterns/Titled%20Sections.aspx

http://patternry.com/p=content-groups/

Module Tabs

Figure 4-31. MapQuest

http://quince.infragistics.com/Patterns/Titled Sections.aspx
http://patternry.com/p=content-groups/

156  Chapter 4:  Organizing the Page: Layout of Page Elements

What

Put modules of content into a small tabbed area so that only one module is visible at a
time. The user clicks on tabs to bring different modules to the top.

Use when

You have a lot of heterogeneous content to show on the page, possibly including text
blocks, lists, buttons, form controls, or images. You don’t have room for everything.

Some of the page content comes in groups or modules (or can be sorted into coherent
groups). Those modules have the following characteristics:

•	 Users only need to see one module at a time.

•	 They are of similar length and height.

•	 There aren’t many modules—fewer than 10, and preferably a small handful.

•	 The set of modules is fairly static; new pages won’t be added frequently, nor will exist-
ing pages be changed or removed frequently.

•	 The modules’ contents may be related or similar to each other.

Why

Tabs are now ubiquitous in desktop interfaces and websites. No one is going to be con-
fused by how they work.

In general, grouping and hiding chunks of content can be a very effective technique for
decluttering an interface. Tabs work well; so do Accordions, Movable Panels, Collapsible
Panels, and simply arranging things into a clean grid of Titled Sections.

How

First, get the information architecture right. Split up the content into coherent chunks,
if it hasn’t already been done for you, and give them short, memorable titles (one or two
words, if possible). Remember that if you split up the content incorrectly, users will be
forced to switch back and forth between tabs as they compare them or look for informa-
tion they can’t find. Be kind to your users and test the way you’ve organized it.

Indicate the selected tab unambiguously, such as by making it contiguous with the panel
itself. (Color alone isn’t usually enough. If you have only two tabs, make sure it’s abun-
dantly clear which one is selected and which one isn’t.)

But the tabs don’t have to be literal tabs, and they don’t have to be at the top of the stack
of modules. You can put them in a lefthand column, or underneath, or even turned 90
degrees with the text read sideways.

The Patterns  157 

When deployed on web pages, Module Tabs tend to be distinct from navigational tabs
(those used for global navigation, or separate documents, or for loading new pages). Tabs
are useful there too, of course, but this pattern is more about giving the user a lightweight
way to see alternative modules of content within a page.

If there are too many tabs to fit in a narrow space, you could do one of several things:
shorten the labels with an ellipsis (and thus make each tab narrower), or use Carousel-like
arrow buttons to scroll the tabs. You could also put the tab labels in a lefthand column,
instead of putting them on top. Never double-row the tabs.

(In the first edition of this book, this pattern was named Card Stack. Most people now
know this concept as simply “tabs,” however, and Module Tabs is a name used by at least
two other pattern libraries.)

Examples

Microsoft Office for Windows 7 uses a “ribbon” atop documents, instead of the tradi-
tional menu and toolbars (see Figure 4-32). The ribbon is essentially a set of Module Tabs.

Figure 4-32. Two tabs on the Excel ribbon

158  Chapter 4:  Organizing the Page: Layout of Page Elements

Some Module Tabs in Mac OS don’t look like tabs—they look like buttons. They behave
exactly like tabs, however. The tabs are across the top, labeled “Audio,” “Photos,” “Movies,”
and “Widgets,” as shown in Figure 4-33.

Figure 4-33. iWeb

Tabs can work along the sides of a module too, as shown in Figure 4-34.

Figure 4-34. SourceForge

The Patterns  159 

In other libraries

http://developer.yahoo.com/ypatterns/navigation/tabs/moduletabs.html

http://ui-patterns.com/patterns/ModuleTabs

http://www.welie.com/patterns/showPattern.php?patternID=tabbing

http://patternry.com/p=horizontal-module-tabs/

Accordion

Figure 4-35. Word palette

What

Put modules of content into a collinear stack of panels that can be closed and opened
independently of each other.

Use when

You have a lot of heterogeneous content to show on the page, possibly including text
blocks, lists, buttons, form controls, or images. You don’t have room for everything.

Some of the page content comes in groups or modules (or can be sorted into coherent
groups). Those modules have the following characteristics:

http://developer.yahoo.com/ypatterns/navigation/tabs/moduletabs.html
http://developer.yahoo.com/ypatterns/navigation/tabs/moduletabs.html
http://ui-patterns.com/patterns/ModuleTabs
http://ui-patterns.com/patterns/ModuleTabs
http://www.welie.com/patterns/showPattern.php?patternID=tabbing
http://patternry.com/p=horizontal-module-tabs/

160  Chapter 4:  Organizing the Page: Layout of Page Elements

•	 Users may want to see more than one module at a time.

•	 Some modules are much taller or shorter than others, but they’re all of similar width.

•	 The modules are part of a tool palette, a two-level menu, or some other coherent
system of interactive elements.

•	 The modules’ contents may be otherwise related or similar.

•	 You may want to preserve the linear order of the modules.

Also note that when large modules are open or many modules are open, the labels on the
bottom of the Accordion may scroll off the screen or window. If that’s a problem for your
users, consider using a different solution.

Why

Accordions have become a familiar interactive element on web pages, almost as familiar
as Module Tabs and drop-down menus. (They aren’t quite as straightforward to use, how-
ever.) Many websites use Accordions in their menu systems to manage very long lists of
pages and categories.

In general, grouping and hiding chunks of content can be a very effective technique for
decluttering an interface. Accordions are part of a toolkit that includes Module Tabs, Movable
Panels, Collapsible Panels, and Titled Sections to do so.

Accordions may be useful in web page navigation systems, but they really shine in desktop
applications. Tool palettes in particular work well with Accordions (and Movable Panels
as well, for similar reasons). Because users can open any set of modules and leave them
open, Accordions help users modify their “living space” in a way that suits them. Yet it’s
easy to reopen a rarely used module when it becomes needed.

How

Arrange the modules vertically, in an order that makes sense for your particular applica-
tion or site. Give each module a short and descriptive title, and put that title into a hori-
zontal bar that the user can click to toggle the module open and closed. You could indicate
the “openability” of a module title bar with a rotating triangle icon: point it rightward
when closed, and downward when open.

Allow more than one module to be open at a time. There are differing opinions on this—
some designers prefer only one module to be open at a time, and some implementations
only allow one (or have a switch that developers can set, at least). But in my experience,
especially in applications, it’s better to let users open multiple modules at a time. It avoids
the abrupt and unexpected disappearance of a previously open module: “Hey, where’d that
other menu go? It was right here!”

When used in an application or when the user is signed in to a website, an Accordion ought
to preserve its state of opened and closed modules between sessions. This isn’t as impor-
tant for navigation menus as it is for tool palettes.

The Patterns  161 

Accordions can be nested if the module contents need further subdivision, but they tend
to look confusing. Users find it hard to tell the difference between an “outer” accordion
panel and an “inner” accordion panel; with everything all in one column, there’s no clarity
to the containment hierarchy. It’s better to use just one flat set of accordion modules, and
to use some other structuring pattern inside a module (e.g., tabs) if necessary.

This technique has existed since at least 1993, and possibly earlier. The Motif-based GUI
builder called UIM/X used closable panels—even with the twist-down arrows—for its
widget palettes.

(In the first edition of this book, this pattern was named Closable Panels. During the years
since then, the user experience community seems to have settled on the name Accordion
instead.)

Examples

Picasa’s browsing window uses an Accordion to show several different ways of viewing a
person’s images. Within each pane, content might be further subdivided or organized,
which Picasa does in the example in Figure 4-36 with Titled Sections. Chrome’s developer
tools, on the other hand, nest Accordions inside each other (see Figure 4-37). You can fig-
ure out the nesting scheme if you stare at it hard enough, but it’s not easy.

Figure 4-36. Picasa lefthand sidebar

162  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-37. Chrome righthand sidebar, with nested accordions

CNN uses an Accordion to show personalized material (see Figure 4-38). Only one panel
can be open at once in this implementation. If it were up to me, I’d want to see both of
these panels open at the same time, but maybe CNN had a very limited amount of vertical
space to work with.

Figure 4-38. CNN sidebar

The Patterns  163 

As shown in Figure 4-39, the Yahoo! Developer Network uses an Accordion in its footer to
let users hide and show sections that they care about (or don’t). Note the use of a Sitemap
Footer, described in Chapter 3.

Figure 4-39. Yahoo! Developer Network page footer

In other libraries

http://developer.yahoo.com/ypatterns/navigation/accordion.html

http://ui-patterns.com/patterns/AccordionMenu

http://www.welie.com/patterns/showPattern.php?patternID=accordion

Designing Web Interfaces by Bill Scott and Theresa Neil (O’Reilly, http://oreilly.com/
catalog/9780596516253/) also describes an Accordion pattern.

Collapsible Panels

Figure 4-40. Google Maps

http://developer.yahoo.com/ypatterns/navigation/accordion.html
http://developer.yahoo.com/ypatterns/navigation/accordion.html
http://ui-patterns.com/patterns/AccordionMenu
http://ui-patterns.com/patterns/AccordionMenu
http://www.welie.com/patterns/showPattern.php?patternID=accordion
http://www.welie.com/patterns/showPattern.php?patternID=accordion

164  Chapter 4:  Organizing the Page: Layout of Page Elements

What

Put secondary or optional material into panels that can be opened and closed by the user.

Use when

You have a lot of heterogeneous content to show on the page, possibly including text
blocks, lists, buttons, form controls, or images. You don’t have room for everything. You
might, however, have Center Stage content that needs to take visual priority.

Some of the page content comes in groups or modules (or can be sorted into coherent
groups). Those modules have the following characteristics:

•	 Their content annotates, modifies, explains, or otherwise supports the content in the
main part of the page.

•	 The modules may not be important enough for any of them to be open by default.

•	 Their value may vary a lot from user to user. Some will really want to see a particular
module, and others won’t care about it at all.

•	 Even for one user, a module may be useful sometimes, but not other times. When it’s
not open, its space is better used by the page’s main content.

•	 Users may want to open more than one module at the same time.

•	 The modules have very little to do with each other. When Module Tabs or Accordions
are used, they group modules together, implying that they are somehow related;
Collapsible Panels do not group them.

Why

Hiding noncritical pieces of content helps to simplify the interface. When a user hides
a module that supports the main content, it simply collapses, giving its space back over
to the main content (or to whitespace). This is an example of the principle of progressive
disclosure—show hidden content “just in time,” when and where the user needs it.

In general, grouping and hiding chunks of content can be a very effective technique for
decluttering an interface. Collapsible Panels are part of a toolkit that includes Module Tabs,
Accordions, Movable Panels, and Titled Sections to do so.

How

Put each supporting module into a panel that the user can open and close via a single
click. Label the button or link with the module’s name or simply “More,” and consider
using a chevron or rotating triangle to indicate that more content is hidden there. When
the user closes the panel, collapse the space used by that panel and devote it to other con-
tent (such as by moving up the content below it on the page).

The Patterns  165 

Consider animating the panels as they open and close. It appears less dislocating when
they smoothly zip open and closed again.

If you have more than one module to hide in this way, you could either put the modules
together on one panel with Module Tabs or an Accordion, or put them in separate places on
the main page.

If you find that most users are opening up a Collapsible Panel that’s closed by default, switch
it to being open by default.

Examples

Google Maps, shown in Figure 4-40 at the top of the pattern, demonstrates how useful
it can be to collapse a panel that’s outlived its usefulness—the visible map area is signifi-
cantly bigger without the sidebar.

Some discussion forums, such as that shown in Figure 4-41, place long comments into
Collapsible Panels. A visitor can skim the page’s short and truncated comments to get a
sense of the discussion, and if a long comment attracts her attention, she can open the
truncated comment to read the whole thing.

Figure 4-41. MSNBC article comments

Many applications show optional sidebars attached to their Center Stage windows.
Firefox’s sidebar, shown in Figure 4-42, is closed by a single click on the “X” button,
and a user can bring it back by selecting a menu item (or by using a keyboard shortcut).
Note the asymmetry—it’s much easier to hide it than to show it, at least until the user
memorizes the keyboard sequence! With a web page, or with an app that isn’t frequently
used, a visible button to bring back the panel would be a better choice.

166  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-42. Firefox bookmarks sidebar

At the time of this writing, YouTube places many Collapsible Panels on a video’s page (see
Figure 4-43). They contain extra content such as the video description, viewing statistics,
and more videos from this poster (not shown in the figure). The page draws attention
to these expandable areas by highlighting them in blue on rollover. They’re all closed by
default, and they close themselves when the page is reloaded. The resultant page is less
cluttered than it would otherwise be, while still providing interesting information to users
inspired enough to open these panels.

The Patterns  167 

Figure 4-43. YouTube’s collapsible panels; three states are shown: neither panel open, video description
panel open, and statistics panel open (both cannot be open at once)

168  Chapter 4:  Organizing the Page: Layout of Page Elements

In other libraries

http://www.welie.com/patterns/showPattern.php?patternID=collapsible-panels

http://www.welie.com/patterns/showPattern.php?patternID=details-on-demand

http://quince.infragistics.com/Patterns/Closable%20Panels.aspx

Movable Panels

Figure 4-44. My Yahoo!

What

Put modules of content into boxes that can be opened and closed independently of each
other. Arrange the boxes freely on the page, and let the user move them around into a
custom configuration.

Use when

You’re designing either a desktop application, or a website that most users sign in to. News
portals, Dashboards, and Canvas Plus Palette apps often use Movable Panels. You want users
to feel a sense of ownership of the software, or at least have fun playing with it.

http://www.welie.com/patterns/showPattern.php?patternID=collapsible-panels
http://www.welie.com/patterns/showPattern.php?patternID=details-on-demand
http://quince.infragistics.com/Patterns/Closable Panels.aspx

The Patterns  169 

The page in question is a major part of the app or site—something that users see often
or for long periods of time. You have a lot of heterogeneous content to show on the page,
possibly including text blocks, lists, buttons, form controls, or images. You don’t have
room for everything.

Some of the page content comes in groups or modules (or can be sorted into coherent
groups). Those modules have some of the following characteristics:

•	 Users will almost certainly want to see more than one module at a time.

•	 Their value may vary a lot from user to user. Some people want modules A, B, and C,
while others don’t need those at all and only want to see D, E, and F.

•	 The modules vary a lot in size.

•	 Their position on the page isn’t terribly important to you, but it might be to users. (By
contrast, a page of static Titled Sections ought to be arranged with thought given to the
importance of page position; important things go to the top, for instance.)

•	 There are many modules—possibly so many that if all were shown at once, a viewer
would be overwhelmed. Either you or the user should pick and choose among them.

•	 You’re willing to let users hide some modules from view altogether (and offer a mech-
anism to bring them back).

•	 The modules may be part of a tool palette or some other coherent system of interac-
tive elements.

Why

Different users have different interests. Websites such as dashboards and portals are most
useful to people when they can choose the content they see.

When they’ll be working on something for a while in a desktop application, people like to
rearrange their environment to suit their working style. They can place needed tools close
to where they work; they can hide things they don’t need; they can use Spatial Memory
(Chapter 1) to remember where they put things. Rationally speaking, Movable Panels help
users get things done more efficiently and comfortably (in the long run—once they’ve
spent time rearranging their environment the way they like it!).

But this kind of personalization seems to appeal to people on some other level, too. They
may do this on infrequently visited websites that provide some kind of entertainment, for
instance. Personalization can increase engagement and buy-in.

Finally, a Movable Panels design easily accommodates new modules introduced over time,
such as those contributed by third parties.

170  Chapter 4:  Organizing the Page: Layout of Page Elements

How

Give each module a name, a title bar, and a default size, and arrange them on the page in
a reasonable default configuration. Let the user move modules around the page at will,
via drag-and-drop if possible. Permit each module to be opened and closed with a simple
gesture, such as a mouse click on a title bar button.

Depending upon the design you’ve chosen, you may want to give the user freedom to
place these pieces anywhere at all, even if they overlap. Or you may want a predefined lay-
out grid with “slots” where pieces can be dragged and dropped—this lets the page main-
tain alignment (and some sense of dignity!) without making the user spend too much
time fiddling with windows. Some designs use ghosting—big drop targets that appear dy-
namically; for example, dotted rectangles—to show where a dragged module would go
when dropped.

Consider letting users remove modules altogether. An “X” button in the title bar is the fa-
miliar way to remove one. Once a module is gone, how does a user bring it back? Let users
add modules—including brand-new ones, perhaps—from a list of available modules that
can be browsed and searched.

Modules may individually allow customization; they might offer Settings Editors (Chapter
2) to adjust various parameters for content or viewing. (A weather widget might ask the
user to set a desired location, for instance.) Some designs make this available via another
button or drop-down menu on the module title bar.

When used in an application or when the user is signed in to a website, Movable Panels
must preserve the state of opened and closed modules between sessions. People will ex-
pect that, and they will be startled if it doesn’t work. (You may also put a “revert to de-
faults” function somewhere, in case a user gets tangled up in the customization and wants
to start anew.)

Examples

iGoogle, shown in Figures 4-45 and 4-46, demonstrates the mechanics of dragging and
dropping a Movable Panel around a page. A user grabs the title bar of a panel; at the be-
ginning of the drag operation, a dotted-line “ghost” shows the place where the panel had
been. As the panel is dragged near another drop zone between panels, another “ghost”
appears there—if the user lets go of the panel now, that’s where it will land.

The Patterns  171 

Figure 4-45. iGoogle, after starting a panel drag

Figure 4-46. iGoogle, about to finish a panel drag

172  Chapter 4:  Organizing the Page: Layout of Page Elements

Desktop applications might use Movable Panels in a couple of ways: to show all the major
tool windows in a complex application such as MATLAB, or to arrange small palette win-
dows around a document, as Photoshop and other Canvas Plus Palette applications do.
MATLAB (Figure 4-47) tiles the panels within one window, much like My Yahoo! and
iGoogle—but each panel can be set to a custom size. Photoshop (Figure 4-48) puts the
palette windows out on the desktop, where a user can freely move them, resize them, and
stack them in Module Tabs.

Figure 4-47. MATLAB desktop

Figure 4-48. Photoshop desktop

The Patterns  173 

In other libraries

http://quince.infragistics.com/Patterns/Movable%20Panels.aspx

http://www.welie.com/patterns/showPattern.php?patternID=customization-window

http://patternry.com/p=drag-and-drop-modules/

http://developer.yahoo.com/ypatterns/richinteraction/dragdrop/modules.html

In developer-oriented references, the term portlet is commonly used to describe the actual
components that go into Movable Panels and thus compose a portal page.

Right/Left Alignment

Figure 4-49. Mac OS system preferences

What

When designing a two-column form or table, right-align the labels on the left and left-
align the items on the right.

http://quince.infragistics.com/Patterns/Movable Panels.aspx
http://quince.infragistics.com/Patterns/Movable Panels.aspx
http://www.welie.com/patterns/showPattern.php?patternID=customization-window
http://www.welie.com/patterns/showPattern.php?patternID=customization-window
http://patternry.com/p=drag-and-drop-modules/
http://developer.yahoo.com/ypatterns/richinteraction/dragdrop/modules.html
http://developer.yahoo.com/ypatterns/richinteraction/dragdrop/modules.html

174  Chapter 4:  Organizing the Page: Layout of Page Elements

Use when

You’re laying out a form or any other set of items that have text labels in front of them.
This could also apply to the internal structure of tables, or any other two-column structure
in which the rows should be read left to right.

The labels come in many lengths—some are short, some long, some line-wrapped. Left-
aligning the labels would put some of them too far away from their associated fields,
leaving a gap too large for users’ eyes to span easily.

Why

When you put text right next to the thing it labels, you form a strong perceptual grouping
of that pair—much more so than if they were separated by a large amount of space. If you
align variable-length labels along their left sides, the short labels won’t be close enough
to their controls, and the side-to-side grouping is broken. (This is the Gestalt principle of
proximity at work.) In short, people will more easily connect each label to its associated
control when the UI uses right/left alignment.

Meanwhile, you should always left-align the controls themselves. When combined with
the right-aligned labels and a uniform spacing between them, they help form a nice strong
double edge down the middle of the whole thing (taking advantage of continuity, another
Gestalt principle). This powerful edge guides the viewer’s eyes smoothly down the page,
supporting a good visual flow.

There are several cases in which you would not want right-aligned labels. For instance,
there is good evidence that reading right-aligned labels is harder than reading left-aligned
labels (which makes sense, because the eye has to work harder to find the beginning of
the line). If your labels are long and need to be carefully read, consider left-aligning them
instead.

If the labels will be localized into different languages, they’ll become different lengths.
Layout becomes awkward when labels sit to the left of the controls—put them on top
instead. (This is harder to read, and makes the page longer.)

In some layouts, right-aligning the labels just doesn’t look good. There might be a column
of items just to the left of the labels, or perhaps the left-aligned titles separate the form’s
sections—all of these, and more, can ruin a right/left alignment. Go with what works.

How

Instead of left-aligning each text label, right-align it. Bring it right up close to its control,
separated by only a few pixels. The net effect will probably be a ragged (unaligned) left
edge—that’s usually OK. If some labels are too long to make this work, try breaking them
into multiple lines, or resort to putting the labels above the control, in which case this
pattern becomes irrelevant.

The Patterns  175 

Then left-align the controls against an imaginary line a few pixels away from the right
edges of the labels. Make them precisely aligned, pixel-perfect—if they’re not, the con-
trols will look messy. (The human visual system is really good at picking out slight
misalignments!)

Again, the other edge of the control column may be ragged. That’s not so good if you’re
dealing with text fields, combo boxes, and other visually “heavy” objects, as in Figure
4-49. Try to stretch them so that their right edges are aligned too, to whatever extent you
can. You can try to align the short ones with one another, and the long ones with one
another.

Examples

Right/Left Alignment also works with layouts that have no input controls at all. The Mac
OS address book entry shown in Figure 4-50 has very little whitespace between the two
columns, but the difference in color helps to separate them visually. Notice that the label
“home page” is much longer than the others; this would have made a lefthand label align-
ment less pleasing to the eye and harder to read.

Figure 4-50. Mac OS address book entry

In other libraries

http://quince.infragistics.com/Patterns/Right%20Aligned%20Labels.aspx

http://www.uxmatters.com/mt/archives/2006/07/label-placement-in-forms.php

http://quince.infragistics.com/Patterns/Right Aligned Labels.aspx
http://quince.infragistics.com/Patterns/Right Aligned Labels.aspx
http://www.uxmatters.com/mt/archives/2006/07/label-placement-in-forms.php

176  Chapter 4:  Organizing the Page: Layout of Page Elements

Diagonal Balance

Figure 4-51. Windows 7 control panel

What

Arrange page elements in an asymmetric fashion, but balance it by putting visual weight
into both the upper-left and lower-right corners.

Use when

You’re laying out a page or dialog box that has a title or header at the top, and some links
or action buttons—such as OK and Cancel, or Submit, or Back and Next—at the bottom.
The page is short enough to fit on the screen without scrolling.

Why

Visually prominent features such as titles, tabs, and buttons should contribute to a bal-
anced composition on the screen. They’re already at opposite ends of the page; when you
put them on opposite sides, too, they often balance one another out. (Think of them as
weights—the bigger or more “contrasty” the features are, the heavier they are; the closer to
the edge they get, the more you need to put on the other side to compensate.)

http://www.uxmatters.com/mt/archives/2006/07/label-placement-in-forms.php

The Patterns  177 

Besides being nicer to look at, a diagonal balance also sets up the page so that the user’s eye
moves easily from the top left to the bottom right—an ideal visual flow for users who speak
left-to-right languages. (See the chapter introduction for a discussion of visual flow.) The rest
of the page should support this visual flow, too. The eye finally comes to rest on elements
representing actions that the user might do next, such as close this UI or go somewhere else.

How

Place the title, tabs, or some other strong element at the upper left of the page; place the
button(s) at the lower right. Content of any width goes in between. If the content itself
contributes to the balance of the page, so much the better—don’t put too much whitespace
on only one side, for instance.

Consider what the color dialog box in Figure 4-51 would look like if you placed the OK
and Cancel buttons to the left edge instead of the right edge. The whole dialog would feel
left-weighted and precarious.

In Windows, the placement of the title in the upper left and the conventional placement
of buttons in the lower right do this for you automatically. In Mac OS, elements such as title
bars, tabs, and action buttons are centered, so Diagonal Balance is much less common there.

Kevin Mullet and Darrell Sano’s classic pre-Web book Designing Visual Interfaces (Sun
Microsystems) describes the ideas of diagonal balance:

Symmetrical layouts provide…visual equilibrium automatically. Asymmetrical lay-
outs can achieve equilibrium as well, but their tenser, more dramatic form of balance,
depends on careful manipulation to compensate visually for differences in the size,
position, and value of major elements.

The following are examples of how you can achieve this balance.

Examples

The simple screen shown in Figure 4-52 directs the viewer’s attention to the lower right,
where the call to action sits.

178  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-52. Starbucks WiFi screen

The focal points in the site shown in Figure 4-53 are the logo, the moving car, the “Let’s
Motor” tag line, and the dealer-locator text field at bottom right—all in a diagonal line
(approximately). The motion of the photograph pushes the eye down and right even more
forcefully than the other examples. Undoubtedly, the designers of the site wanted to en-
courage people to use the text field. If it were at the bottom left instead, the page would
lose much of its punch, and the text field might get lost in the page.

Figure 4-53. Mini Cooper website from 2005

The Patterns  179 

Responsive Disclosure

Figure 4-54. AutoTrader

What

Starting with a very minimal UI, guide a user through a series of steps by showing more
of the UI as he completes each step.

Use when

The user should be walked through a complex task step by step, perhaps because the task
is novel, rarely done, or outside the user’s domain knowledge. But you don’t want to force
the user to go page by page at each step—you’d rather keep the whole interface on one
single page.

Alternatively, the task may be branched, with different types of information required
“downstream” depending on a user’s earlier choices.

Why

In this pattern, the interface actually appears to be “created” in front of the user, one step
at a time. At first, the user sees only those elements that are necessary for the first step.
When the user takes that step, the next set of elements is displayed in addition to the first
ones, then the next, and so on.

As the user sees the task unfolding directly in front of him via a dynamically growing
UI, he can form a correct mental model of the task more quickly and easily. None of the
awkward context switches that separate wizard screens impose exist here: when a user is
yanked out of his workflow into a rigid set of modal screens shown one at a time, it feels
like more of an imposition than if the UI had stayed within the user’s working context.

180  Chapter 4:  Organizing the Page: Layout of Page Elements

Furthermore, since the UI is kept together on one page, the user can easily go back and
change his mind about earlier choices. As each step is redone, he immediately sees the
effect on subsequent steps. This is better than jumping from one content-starved wizard
screen to another.

For occasional tasks, Responsive Disclosure can work better than presenting a complex and
interlinked set of controls all at once, because it’s always obvious what the first step is—
and the next, and the next. The user never has to think too hard.

How should you choose between this pattern and Responsive Enabling? If you use Responsive
Enabling, you will have to put all the controls for all choices on the UI—you’ll just disable
the irrelevant ones until they become relevant (again, in response to the user’s choices).
Sometimes that can make the UI too cluttered or complicated-looking. It’s a judgment
call: if you need to fit the UI into a very small space, or if you think too many controls on
the UI might look bad or make users nervous, use Responsive Disclosure instead.

How

Start by showing the controls and text for only the first step. When the user completes that
step, show the controls for the next step, and so on. Leave the previous steps’ controls vis-
ible to let the user go backward if necessary. Keep it all on one page or dialog box so that
the user isn’t abruptly pushed into a separate “UI space.”

In many such step-by-step designs, the choices the user makes at one step alter the rest
of the task (i.e., the task is branched, not linear). For instance, an online order form asks
whether the billing address is the same as the shipping address. If the user says yes, the
UI doesn’t even bother showing entry fields for it. Otherwise, there’s one more step in the
process, and the UI shows the second set of entry fields when appropriate.

The concept of responsive disclosure isn’t new. It was used in 1981 in the first commer-
cial WIMP interface, the Xerox Star. Its designers considered “progressive disclosure,” a
more general concept that includes responsive disclosure, to be a major design principle:
“Progressive disclosure dictates that detail be hidden from users until they ask or need to
see it. Thus, Star not only provides default settings, it hides settings that users are unlikely
to change until users indicate that they want to change them.”* Indeed.

In the Star’s property sheets, for instance, blank space was reserved for controls that would
appear as needed, in response to user choices. When a user chose from a set of values
including the word Other, for instance, an extra text field would appear for the user to
enter a number.

*	 Johnson, J.A., et al. 1989. “The Xerox ‘Star’: A Retrospective.” IEEE Computer 22(9), 11–29. See also http://
www.digibarn.com/friends/curbow/star/retrospect/.

The Patterns  181 

Examples

The Kayak example in Figure 4-55 hides the calendar and comparison box until the user
has filled out enough of the form. Once they appear, the user will shift attention to them.

Figure 4-55. Kayak

Another way to use Responsive Disclosure is to swap out a piece of a UI depending on the
selection made in a drop-down or other limited-choice control. The examples in Figure
4-56, from Google Docs, do this: when the user changes the “Question Type” selection,
the follow-on questions change accordingly. (So does the AutoTrader example, at the top
of the pattern in Figure 4-54.)

182  Chapter 4:  Organizing the Page: Layout of Page Elements

Figure 4-56. Google Docs form field creation

In other libraries

http://patternry.com/p=inline-input-adder/

http://quince.infragistics.com/Patterns/Responsive%20Disclosure.aspx

Responsive Enabling

Figure 4-57. TurboTax

http://patternry.com/p=inline-input-adder/
http://patternry.com/p=inline-input-adder/
http://quince.infragistics.com/Patterns/Responsive Disclosure.aspx
http://quince.infragistics.com/Patterns/Responsive Disclosure.aspx

The Patterns  183 

What

Starting with a UI that is mostly disabled, guide a user through a series of steps by en-
abling more of the UI as each step is done.

Use when

The user should be walked through a complex task step by step, perhaps because the user
is computer-naive or because the task is rarely done (as in a Wizard). But you don’t want to
force the user to go page by page at each step—you’d like to keep the whole interface on
one page. Furthermore, you want to keep the interface stable; you’d rather not dynami-
cally reconfigure the page at each step, as you would with Responsive Disclosure.

Why

Like Responsive Disclosure, this pattern takes advantage of the malleability of computer
displays to interactively guide the user through the interface. The user thus gets a chance
to form a correct mental model about cause and effect. The UI itself tells her the conse-
quences of some choices: if I turn this checkbox on, I have to fill in these four text fields
that just got enabled.

Furthermore, the user can’t do things that would get her into trouble, since the UI has
“locked out” those actions by disabling them. Unnecessary error messages are thus
avoided.

How

In some applications, most actions on the UI start off disabled—only the actions relevant
to the user’s first step are available. As the user makes choices and performs actions, more
disabled items should be enabled and brought into play. In this respect, it’s remarkably
like Responsive Disclosure, in that the machine specifies a particular sequence through the
interface.

A similar, less sequence-based technique is much more common in desktop UIs. As the
user does things on the interface, certain actions or settings become irrelevant or impos-
sible, and those actions get disabled until the user does whatever is necessary to reenable
them. Overall sequence isn’t as important.

Whenever possible, put the disabled items in close proximity to whatever enables them.
That helps users find the magic enabling operation and understand the relationship be-
tween it and the disabled items. The examples in Figures 4-57 and 4-58 place that text
field (or checkbox, respectively) at the top or left of the disabled items, which follows the
natural top-to-bottom and left-to-right “flow” of the interface.

When you design an interface that uses Responsive Enabling or Responsive Disclosure,
be sure to disable only things that really can’t or shouldn’t be used. Be wary of over-
constraining the user’s experience in an attempt to make the interface friendlier or easier

184  Chapter 4:  Organizing the Page: Layout of Page Elements

to understand. When you decide what to disable, carefully consider each item. Is it being
disabled for a really good reason? Can that functionality be enabled all the time? As usual,
usability testing gives users a chance to tell you that you’ve done it wrong.

Another usability problem to avoid is what Bruce Tognazzini once called the “Mysteriously
Dimmed Menu Items”—when the design offers no clue as to why a given item is disabled.
Again, minimize the set of things that have to be disabled, especially when they’re far
away from whatever operation turns them on. Also, somewhere in the interface or its help
system, tell the user what causes a feature to be unavailable. Again, this whole problem
can be avoided more easily when the disabled controls aren’t menus on a menu bar, but
instead sit out on the main UI, collocated with whatever switches them on. Spatial prox-
imity is an important clue.

Examples

The Mac OS System Preferences, shown in Figure 4-58, provide a typical example of dis-
abling based on a binary choice: should the desktop show the date and time on the menu
bar, or not? If the user chooses to show it, she gets a panoply of choices about how it ought
to be shown. If not, the choices are irrelevant, so they’re disabled. This behavior (plus the
indenting of the options under the checkbox) tells the user that these choices affect the
date/time display which the checkbox toggled—and nothing else.

Figure 4-58. Mac OS system preferences

You can also reverse the sense of this pattern and do “responsive disabling.” The naviga-
tion system used in Toyota’s Prius and Lexus cars employs this technique when a user en-
ters a destination address (see Figure 4-59). Knowing what streets exist in a given search
area, the system narrows down the possible street names with each successive letter en-
tered by the user. It then disables the letters that can’t possibly follow the currently typed
string; the user has fewer buttons to think about, plus some assurance that the system
“knows” what she’s trying to type. Address entry is thus made easier and more pleasant.
(When only a few streets match, the system takes away the keyboard altogether and shows
the streets as a list of choices—see the Autocompletion pattern in Chapter 8.)

The Patterns  185 

Figure 4-59. Lexus hybrid navigation system

In other libraries

http://quince.infragistics.com/Patterns/Responsive%20Enabling.aspx

http://quince.infragistics.com/Patterns/Responsive Enabling.aspx

186  Chapter 4:  Organizing the Page: Layout of Page Elements

Liquid Layout

Figure 4-60. Mac OS open dialog

What

As the user resizes the window, resize the page contents along with it so that the page is
constantly “filled.”

Use when

The user might want more space—or less—in which to show the content of a window,
dialog box, or page. This is likely to happen whenever a page contains a lot of text (as in
a web page), a high-information control such as a table or tree, or a graphic editor. This
pattern doesn’t work as well when the visual design requires a certain amount of screen
real estate, neither more nor less.

Why

Unless you’re designing a “closed” UI such as a kiosk or a full-screen video game, you can’t
predict the conditions under which users will view your UI. Screen size, font preferences,
other windows on the screen, or the importance of any particular page to the user—none
of this is under your control. How, then, can you decide the one optimal page size for all
users?

Giving the user a little control over the layout of the page makes your UI more flexible
under changing conditions. It may also make the user feel less antagonistic toward the UI,
since he can bend it to fit his immediate needs and contexts.

http://quince.infragistics.com/Patterns/Responsive Enabling.aspx

The Patterns  187 

If you need more convincing, consider what happens to a fixed-layout “nonliquid” UI
when the language or font size changes. Do columns still line up? Do pages suddenly
become too wide or even clipped at the margins? If not, great; you have a simple and
therefore robust design. But pages engineered to work nicely with window size changes
generally also accommodate language or font size changes.

How

Make the page contents continuously “fill” the window as it changes size. Multiline text
should wrap at the right margin until it becomes 10 to 12 words wide (more on that later).
Text, trees, tables, graphs, and editors at “center stage” should enlarge generously while
their margins stay compact. If the page has anything form-like on it, horizontal stretch-
ing should cause text fields to elongate—users will appreciate this if they need to type in
anything longer than the text field’s normal length. Likewise, anything scrolled (such as
lists or tables) should lengthen, and possibly widen, too.

Web pages and similar UIs should allow the body content to fill the new space, while keep-
ing navigational devices and signposts anchored to the top and left margins. Background
colors and patterns should always fill the new space, even if the content itself cannot.

What happens when the window gets too small for its content? You could put scrollbars
around it. Otherwise, whitespace should shrink as necessary; outright clipping may occur
when the window gets really tiny, but the most important content should hang in there
to the end.

If the interface shows paragraphs of text, remember that they become nearly illegible
when they’re too wide. Graphic designers target an optimal line length for easy reading of
text; one metric is 10 to 12 average English words per line. Another metric is 30 to 35 em
widths—that is, the width of your font’s lowercase m. When your text gets much wider
than that, users’ eyes have to travel too far from the end of one line to the beginning of the
next one; if it gets narrower, it’s too choppy to read easily.

(That being said, there is evidence that text with a longer line length, such as 100 char-
acters per line, is faster to read than shorter lines, even though users prefer to read lines
fewer than 55 characters long.*)

Examples

Mac OS allows you to resize the standard Open dialog box, which uses a Liquid Layout.
This is good because the user can see as much of the filesystem hierarchy as he wants,
rather than being constrained to a tiny predetermined space. See Figure 4-60 at the top
of the pattern.

*	 “Use Reading Performance or User Preference,” from http://usability.gov/guidelines/.

188  Chapter 4:  Organizing the Page: Layout of Page Elements

When a Liquid Layout is used on text in a browser, the floated elements should handle the
resize gracefully, as in the Drupal.org example shown in Figure 4-61. Note also that the
text in this article never gets so wide as to be unreadable, even when the window itself is
very wide.

Figure 4-61. From Drupal.org

Google Docs allows the user to shrink the window to a very narrow size (see Figure 4-62).
Though it places long toolbars across the top of the document, those toolbars wrap around
and collapse gracefully as the window shrinks. (The user can’t resize it to be smaller than
the smallest size shown here.)

The Patterns  189 

Figure 4-62. Google Docs slideshow editor

In other libraries

http://www.welie.com/patterns/showPattern.php?patternID=liquid-layout

http://quince.infragistics.com/Patterns/Liquid%20Layout.aspx

http://www.designofsites.com/designing-effective-page-layouts/expanding-screen-width

http://www.welie.com/patterns/showPattern.php?patternID=liquid-layout
http://www.welie.com/patterns/showPattern.php?patternID=liquid-layout
http://quince.infragistics.com/Patterns/Liquid Layout.aspx
http://quince.infragistics.com/Patterns/Liquid Layout.aspx
http://www.designofsites.com/designing-effective-page-layouts/expanding-screen-width

Chapter 5

Lists of Things

This chapter covers only one topic: how to display lists of items in an interactive set-
ting. Just items. Actual data—complex and highly structured data sets—isn’t covered until
Chapter 7.

Why do lists merit their own chapter, you may ask?

Consider the many types of items that get shown in lists: articles, pages, photos, videos,
maps, books, games, movies, TV shows, songs, products, email messages, blog entries,
status updates, forum posts, comments, search results, people, events, files, documents,
apps, links, URLs, tools, modes, actions. (Add your own!)

Practically every moderately complex interface or website ever designed includes lists.
This chapter will help you think about them logically and clearly, understand different
design aspects, and make good trade-offs when designing interfaces that use lists.

Since so many other interface design topics overlap with this one, this chapter will often
refer to other chapters and patterns. Menus are handled in Chapter 6, complicated data in
Chapter 7, and links and other navigational mechanisms in Chapter 3. Mobile platforms
have very specific design constraints, so Chapter 10 will be referred to as well. But there’s
still a lot left over.

192  Chapter 5:  Lists of Things

Use Cases for Lists
Before jumping into a design, it’s useful to analyze the use cases for a list. What will people
need to do with it? Which of these scenarios apply?

Getting an overview
What impression will someone get from the list as a whole? In some cases, a user
should be able to skim down the list and understand what it’s about. Sometimes that
requires more than just words; it may require images or careful visual organization to
convey that impression.

Browsing item by item
Will the user peruse items, either randomly or in order? Does he need to click on
items to open them? If so, it should be easy to go back to the list and find another
item, or move directly to the next one.

Searching for a specific item
Is the user looking for something in particular? He should be able to find it quickly,
with a minimum of clicks, scrolling, and back-and-forth.

Sorting and filtering
If someone is looking for an item or group of items with a specific characteristic (e.g.,
“anything with a date between X and Y”) or is looking for general insight into a set
of data, sorting and filtering functions might help. This is addressed in more detail
in Chapter 7.

Rearranging, adding, deleting, or recategorizing items
Consider a Picture Manager containing the user’s photos: the user owns the list and the
items within it. Most apps and sites that show personal collections permit direct ma-
nipulation of those lists so that the user can drag items around into a desired order or
grouping scheme. He should also be able to select multiple items at a time for moving,
editing, or deleting; a design should either use the platform standards for multiple
selection (e.g., Shift-select), or supply checkboxes beside each item to permit the user
to select an arbitrary subset.

Back to Information Architecture
We discussed information architecture—the design of information, independent of its vi-
sual representation—in Chapter 2. Let’s return to it for a minute. If you have a list of things
to show in a page, what are the salient nonvisual characteristics of that list?

Length
•	 How long is the list? Can it fit in the space you’ve designed for it?

•	 Could the list sometimes be “bottomless”? For example, web search results often con-
stitute such a long list that the user will never reach the end; likewise for items taken
from a very large and deep archive.

Back to Information Architecture  193 

Order
•	 Does the list have a natural order, such as alphabetical or by time?

•	 Would it make sense for a user to change the sorting order of the list? If so, what
would the user sort on?

•	 If you choose to put a list into an order, would it actually make more sense as a group-
ing scheme, or vice versa? As an example, think about a blog archive: the articles
are naturally ordered by time, and most blogs categorize them by month and year,
rather than offering a flat ordered list. Someone looking for a particular article might
remember that “it was before article X but after article Y,” but not remember exactly
which month it was published. A monthly grouping thus makes it hard to find that
article; a time-ordered flat list of titles might work better.

Grouping
•	 Do the items come in categories? Is it a natural categorization that users will immedi-

ately understand? If not, how can you explain it, either verbally or visually?

•	 Do these categories come in larger categories? More broadly, do the items fit into a
multi-level hierarchy, such as files in a filesystem?

•	 Are there several potential categorizations? Would they fit different use cases or user
personas? And can users create their own categories for their own purposes?

Item types
•	 What are the items like? Are they simple, or are they rich and complex? Are they

just stand-ins for larger things, such as headlines for articles or thumbnails for video
clips?

•	 Are the items in a list very different from each other (e.g., some are simple and some
are complex)? Or are they homogeneous?

•	 Does each item have an image or picture associated with it?

•	 Does each item have a strict field-like structure? Would it help the user to know that
structure, or possibly even sort the list based on different fields? (Email messages
typically have a strict and sortable structure—timestamp, from field, subject, and so
on—and this structure typically is shown in lists of messages.)

Interaction
•	 Should you show the whole item at once in the list, or can you just show a representa-

tion of the item (such as its name or the first few sentences) and hide the rest?

•	 What is the user supposed to do with those items? Should they be looked at? Should
they be selected for inspection, or for performing tasks on them? Or are they links or
buttons to be clicked on?

•	 Does it make sense for the user to select multiple items at a time?

194  Chapter 5:  Lists of Things

Dynamic behavior
•	 How long does it take to load the whole list? Can it be more or less immediate, or will

there be a noticeable delay as the list is put together somewhere and finally shown to
the user?

•	 Will the list change on the fly? Should you show the updates as they happen? Does
this mean inserting new items at the top of the list automatically?

The answers to these questions may suggest a variety of design solutions to you. Of course,
a solution should also take into account the type of content (blogs should look different
from, say, contact lists), the surrounding page layout, and implementation constraints.

Some Solutions
The interaction questions listed in the preceding section set the tone for almost all the
other decisions. For instance, a fully interactive list—multiple selection, drag-and-drop,
editing items, and so on—tends to dominate the interface. You may be building a Picture
Manager, an email client, or some other full-fledged application that people use to manage
and enjoy content that they own.

In this and other types of interfaces, a common requirement is to show only item names
or thumbnails in a list—just a representation of each item—and then display the whole
item when the user selects one from the list. There are at least three ways to do this.

“When the user selects an item from a list, where should I show the details of that item?”
•	 Two-Panel Selector shows the item details right next to the list. It supports the over-

view and browsing use cases quite well because everything’s visible at once; the sur-
rounding page stays the same, so there’s no awkward context switch or page reload.

•	 List Inlay shows the item details embedded in the list itself. The details only open
up when the user requests them with a click or tap. This pattern supports the over-
view and browsing use cases, too—though an overview is harder if lots of items are
open—and searching on item contents can be done smoothly by automatically open-
ing matched items.

•	 One-Window Drilldown replaces the list’s space with the item details. This is often
used for small spaces that cannot accommodate a Two-Panel Selector, such as mobile
screens or small module panels. It does lead to “pogo sticking” between the list screen
and the item screen, though, so browsing and searching are not so easy.

Some Solutions  195 

Now let’s shift our attention to the items themselves. How much detail should you show
with each item, assuming the user will click through to see the whole thing? Again, you
have three main use cases to serve: get a quick overview, browse the list, and find items
of interest. For really focused tasks, such as finding a person’s phone number in a long
contact list, all that’s needed is the item name. But for a broader, more browsing-oriented
experience—news articles on a web page, for instance—more information makes an item
more interesting (up to a point, anyway). And if you have visuals associated with each
item, show thumbnails!

“How can I show a list with heavy visuals?”
•	 Use fat rows. Instead of just one line per item, give each item row several lines’ worth

of text. Enhance it with a small graphic or image thumbnail, if available, and use rich
text formatting to express a miniature visual hierarchy within each row. See the Grid
of Equals pattern in Chapter 4 for the basis of this pattern.

•	 Thumbnail-and-Text List, in Chapter 10, is a specialization of fat rows for a mobile
device.

•	 Thumbnail Grid is a common pattern for pictorial objects. A 2D grid of small pictures
is visually powerful; it dominates the page and draws attention. Text data is often
shown with the thumbnails, but it tends to be small and less important than the pic-
tures. Again, see the Grid of Equals pattern for a generalization.

•	 Carousel is an alternative to Thumbnail Grid that can use less space on the page. It is
strictly linear, not 2D, and the user must actively scroll through it to see more than a
few objects. Depending on its design, a Carousel implementation might actually give
you more space to show the selected or center object than a Thumbnail Grid.

Highly structured, homogeneous sets of items work well in a table layout, with a column
for each field of interest to users. Such a table might offer sorting via a Sortable Table, or a
“Sort by” drop down for a simpler implementation. Row Striping can help a viewer’s eyes
travel across a single item’s row, from left to right and back again. Tables are lists, but
they’re also complex data graphics that can be filtered and visualized with sophisticated
tools. So for other table-related patterns, I refer you to Chapter 7.

Very long lists can be difficult to design, especially on web pages. Certainly there are
technical challenges around loading times and page length, but interaction design might
be even harder—how does a user browse and move through such a list? How can he find
something specific, especially if a text search doesn’t behave as desired? The following
techniques and patterns apply to all the previously listed ways to show a list and its items
(except maybe a Carousel, which has tighter constraints):

196  Chapter 5:  Lists of Things

“How can I manage a very long list?”

•	 Pagination lets you load the list in sections, putting the onus on the user to load those
sections as needed. This is, of course, quite common in websites—it’s easy to design
and implement. Pagination is most useful when the user is likely to find the desired
item(s) in the first page, since many people won’t bother going to subsequent pages
anyway. You could also resort to Pagination when loading the whole list will result in
a ridiculously long page or take a ridiculously long time. A good Pagination control
shows the user how many pages of items there are, as well as letting a user jump
among those pages.

•	 Infinite List is a single-page alternative to Pagination. The first section of a long list
gets loaded, and at the bottom the user finds a button that loads and appends the
next section. The user stays on one page. Common in mobile designs, this pattern
can be found in Chapter 10. Don’t discount it for regular web pages, however! This
pattern is useful when you don’t actually know how long the list will be, or when it’s
“bottomless.”

•	 A variant on Infinite List has the list automatically loading itself as the user scrolls
down. See the Continuous Scrolling pattern at the following page:

http://ui-patterns.com/patterns/ContinuousScrolling

•	 When a very long alphabetized list is kept in a scrolled box, consider using an Alphabet
Scroller. Related to Annotated Scrollbar (Chapter 3), this device shows the alphabet ar-
rayed along the scrollbar itself; the user can then jump directly to a desired letter.

•	 Direct searching via a “Find” field may be critical for helping your users to find spe-
cific items. Also, filtering a list—screening out entire classes of items that don’t meet
certain criteria—can help shorten a list to a manageable size.

So far, this section has talked mostly about flat lists: those that have no categories, con-
tainment, or hierarchy. However a list might be rendered, you may still want to break it
up into categories for clarity.

“How can I show a list that’s organized into categories or hierarchies?”
•	 Titled Sections (Chapter 4) work well for a single level of containment. Just separate

the list into sections with titles, and perhaps allow the user to sort the list within a
single section so as not to disrupt the categorization. If you only have a few sections,
try an Accordion—this lets the user close list sections that she doesn’t need.

•	 For two or more levels of hierarchy, basic trees are the standby solution. These are
normally presented with indented hierarchy levels, and with icons such as pluses
and minuses (commonly found on Windows) or rotating triangles. The levels can be
closed and opened by the users or automatically by the interface as needed. Many UI
toolkits offer tree implementations.

The Patterns  197 

•	 Cascading Lists take a tree’s vertically oriented hierarchy and turn it on its side,
with a series of columns that list all the possibilities at every level of the hierarchy.
Popularized by Mac OS, this pattern allows very effective browsing and overviews of
hierarchies at the cost of large amounts of space. (It does not work in a small window
or screen.)

•	 When the items are heavily structured and you want to present them in a table but
they come organized in a hierarchy, consider a Tree Table. Literally, it combines a tree
with a table, and it’s exactly what it sounds like.

The Patterns
First are the three patterns that place item details next to, inside, or on a different page
from the list itself:

1.	 Two-Panel Selector

2.	 One-Window Drilldown

3.	 List Inlay

The next few patterns cover ways to show lists of various sorts—image-based lists
(Thumbnail Grid and Carousel), tables (Row Striping), long lists (Pagination, Jump to Item,
Alphabet Scroller), and hierarchies (Cascading Lists and Tree Table). If you’re using a table or
Tree Table, consider making it a Sortable Table (see Chapter 7).

4.	 Thumbnail Grid

5.	 Carousel

6.	 Row Striping

7.	 Pagination

8.	 Jump to Item

9.	 Alphabet Scroller

10.	 Cascading Lists

11.	 Tree Table

Finally, New-Item Row lets a user add items to a list however that list may be rendered.

12.	 New-Item Row

198  Chapter 5:  Lists of Things

Two-Panel Selector

Figure 5-1. Mac OS system preferences

What

Put two side-by-side panels on the interface. In the first one, show a list of items that the
user can select at will; in the second one, show the content of the selected item.

Use when

You have a list of items to show. Each item has interesting content associated with it, such
as the text of an email message, a long article, a full-sized image, contained items (if the
list is a set of categories or folders), or details about a file’s size or date.

You want the user to see the overall structure of the list and keep that list in view all the
time, but you also want him to be able to browse through the items easily and quickly.
People won’t need to see the details or content of more than one item at a time.

Physically, the display you’re working with is large enough to show two separate panels
at once. Very small cell phone displays cannot cope with this pattern, but many larger
mobile devices can.

Why

This is a learned convention, but it’s an extremely common and powerful one. People
quickly learn that they’re supposed to select an item in one panel to see its contents in the
other. They might learn it from their email clients, or from Windows Explorer, or from
websites; whatever the case, they apply the concept to other applications that look similar.

The Patterns  199 

When both panels are visible side by side, users can quickly shift their attention back and
forth, looking now at the overall structure of the list (“How many more unread email mes-
sages do I have?”), and now at an object’s details (“What does this email say?”). This tight
integration has several advantages over other physical structures, such as two separate
windows or One-Window Drilldown:

•	 It reduces physical effort. The user’s eyes don’t have to travel a long distance between
the panels, and he can change the selection with a single mouse click or key press
rather than first navigating between windows or pages (which can take an extra
mouse click).

•	 It reduces visual cognitive load. When a window pops to the top, or when a page’s
contents are completely changed (as happens with One-Window Drilldown), the user
suddenly has to pay more attention to what he’s now looking at; when the window
stays mostly stable, as in a Two-Panel Selector, the user can focus on the smaller area
that did change. There is no major “context switch” on the page.

•	 It reduces the user’s memory burden. Think about the email example again: when
the user is looking at just the text of an email message, there’s nothing on-screen to
remind him of where that message is in the context of his inbox. If he wants to know,
he has to remember, or navigate back to the list. But if the list is already on-screen,
he merely has to look, not remember. The list thus serves as a “You are here” signpost
(see Chapter 3 for an explanation of signposts).

•	 It’s faster than loading a new page for each item, as can happen with One-Window
Drilldown.

How

Place the selectable list on the top or left panel, and the details panel below it or to its right.
This takes advantage of the visual flow that most users who read left-to-right languages
will expect (so try reversing it for right-to-left language readers).

When the user selects an item, immediately show its contents or details in the second
panel. Selection should be done with a single click. But while you’re at it, give the user
a way to change his selection from the keyboard, particularly with the arrow keys—this
helps reduce both the physical effort and the time required for browsing, and contributes
to keyboard-only usability (see Keyboard Only in Chapter 1).

Make the selected item visually obvious. Most GUI toolkits have a particular way of show-
ing selection (e.g., reversing the foreground and background of the selected list item). If
that doesn’t look good, or if you’re not using a GUI toolkit with this feature, try to make
the selected item a different color and brightness than the unselected ones—that helps it
stand out.

200  Chapter 5:  Lists of Things

What should the selectable list look like? It depends—on the inherent structure of the
content, or perhaps on the task to be performed. For instance, most filesystem viewers
show the directory hierarchy, since that’s how filesystems are structured. Animation and
video editing software use interactive timelines. A GUI builder may simply use the layout
canvas itself; selected objects on it then show their properties in a property editor next to
the canvas.

A Two-Panel Selector has identical semantics to tabs: one area for the selectors, and one
area next to it for the content of the selected thing. Likewise, a List Inlay is like an Accordion
(Chapter 4), and One-Window Drilldown is like a Menu Page (Chapter 3).

When the select-and-show concept is extended through multiple panels to facilitate navi-
gation through a hierarchical information architecture, you get the Cascading Lists pattern.

Examples

Many email clients use this pattern to show a list of email messages next to the currently
selected message (see Figure 5-2). Such listings benefit from being nearly as wide as the
whole window, so it makes sense to put the listing on top of the second panel, not to its
left. (Also, this example shows the use of a third selector panel on the left that lets the user
choose which mailbox to work in.)

Figure 5-2. Mac Mail on a desktop

The Patterns  201 

Like many other Picture Managers, Picasa (Figure 5-3) lists the various image folders and
categories in its Two-Panel Selector. The result is a second list, of images. When the user
selects an image, the whole window is replaced; see One-Window Drilldown.

Figure 5-3. Picasa

In other libraries

http://quince.infragistics.com/Patterns/Two-Panel%20Selector.aspx

http://www.welie.com/patterns/showPattern.php?patternID=overview-detail

http://quince.infragistics.com/Patterns/Two-Panel Selector.aspx
http://www.welie.com/patterns/showPattern.php?patternID=overview-detail

202  Chapter 5:  Lists of Things

One-Window Drilldown

Figure 5-4. Mac Mail on iPhone

What

Show a list or menu of items in a single window. When the user selects an item from the
list, show the details or contents of that item in the window, replacing the list.

Use when

You have a list of items to show. Each item has interesting content associated with it, such
as the text of an email message, a long article, a full-size image, or details about a file’s size
or date.

You have very little space to work with—not enough for a Two-Panel Selector or a List Inlay.
For instance, the design might be intended for a very small mobile screen, or for a self-
contained web page sidebar or widget.

Alternatively, the list items and contents might just be large. You might need the entire
screen or window to show the list, and again to show the contents of an item. Online
forums tend to work this way, requiring the whole width of the page to list conversation
topics and a separate scrolled page to show the conversations themselves.

The Patterns  203 

Why

In a very constrained space, this may be the only reasonable option for presenting a list
and item details. It gives each view the entire available space to “spread out” on the page.

Like Menu Page in Chapter 3, however, this pattern has the benefit of simplicity. A list of
items (or links) is easy to understand: to see more of an item, you click or tap on it and
thus “drill down” one level. Then you can come back up to the main list or menu to go to
another item.

How

Create the list using whatever layout or format you find best—simple text names, multi-
line “fat rows” with text formatting, trees or outlines, and Thumbnail Grids all work fine, as
do other formats. Vertically scroll it if necessary to fit it into the available space.

When the user clicks, taps, or otherwise selects one of the list items, replace the list display
with a display of the item details or contents. On it, place a Back or Cancel button that
brings the user back to the list screen (unless the platform supplies hardware buttons for
such).

The item screen may offer additional navigational possibilities, such as drilling down fur-
ther into the item details, stepping down into an item contained within that item (as in a
hierarchy), or going “sideways” to the previous or next item in the list (as discussed in the
next paragraph). In each case, replace the previous screen with the new one, and make
sure the user can easily step back to the previous screen.

One disadvantage of this pattern is that to go from item to item, the user must “pogo-
stick” between the list page and the item page. It takes a lot of clicks or taps to see more
than a few items, and the user certainly can’t flick between them quickly (as with Two-
Panel Selector) or compare them easily (as with List Inlay). You can mitigate this problem
by using Back and Next links to connect the user directly to the previous and next items
in the list—see the Pyramid pattern in Chapter 3.

Examples

Examples abound in mobile designs, as shown in Figure 5-4. Contrast this mobile version
of a mail client with its desktop counterpart shown in the Two-Panel Selector pattern. For
instance, the One-Window Drilldown approach requires more text to be shown in the list, so
the user has enough context to identify messages and triage them.

You can find One-Window Drilldown in full-size applications and web pages, too. Forums
and communities tend to use it a lot—topics are listed on one page, and discussion threads
are on their own pages. Ravelry demonstrates this approach, as do about six million other
online forums (see Figure 5-5).

204  Chapter 5:  Lists of Things

Figure 5-5. Ravelry forums

The Picasa desktop application, a Picture Manager, uses a Two-Panel Selector beside a
Thumbnail Grid for its browsing interface (see Figure 5-6). But once the user clicks a photo,
Picasa replaces the entire contents of the window (except the bottom toolbar) with a new
layout—one that shows the photo itself in Center Stage, with a set of tools next to it.

The Patterns  205 

Figure 5-6. Picasa

In other libraries

http://quince.infragistics.com/Patterns/One-Window%20Drilldown.aspx

http://quince.infragistics.com/Patterns/One-Window Drilldown.aspx

206  Chapter 5:  Lists of Things

List Inlay

Figure 5-7. Kayak’s expanding list items

What

Show a list of items as rows in a column. When the user selects an item, open that item’s
details in place, within the list itself. Allow items to be opened and closed independently
of each other.

Use when

You have a list of items to show. Each item has interesting content associated with it, such
as the text of an email message, a long article, a full-size image, or details about a file’s size
or date. The item details don’t take up a large amount of space, but they’re not so small
that you can fit them all in the list itself.

You want the user to see the overall structure of the list and keep that list in view all the
time, but you also want her to browse through the items easily and quickly. Users may
want to see two or more item contents at a time, for comparison.

The list of items has a vertically oriented, columnar structure.

The Patterns  207 

Why

A List Inlay shows an item’s details within the context of the list itself. The user can see the
surrounding items, which might help in understanding and using the item contents.

Also, a user can see the details of multiple items at once. This is not possible in Two-Panel
Selector, One-Window Drilldown, rollover windows, or most other ways of displaying item
details. If your use cases call for frequent comparison of two or more items, this might be
the best option.

Because a List Inlay is neatly contained within a vertical column, it can be combined well
with a Two-Panel Selector to present a three-level containment hierarchy. Consider an
email client or RSS reader, for instance—the messages or articles might be viewed in a List
Inlay, while the item containers (mailboxes, groupings, filters, etc.) are shown next to it in
a Two-Panel Selector structure.

How

Show list items in a column. When the user clicks on one, open the item in place to show
the details of that item. A similar gesture should close the item back up again.

When an item is opened, enlarge the item’s space downward, pushing the subsequent
items down the page. Other items do the same when opened. A scrolled area should be
used to contain this ever-changing vertical structure, since it could get very tall indeed!

To close the details panel, use a control that clearly indicates its purpose (e.g., “Close”
or “X”). Some implementations of List Inlay only put that control at the end of the details
panel, but users may need it at the top if the panel is long and they don’t want to move
down the whole thing. Put a closing control very near the original “open” control (or re-
place one with the other). This at least ensures that the user’s pointer won’t move very far
if she wants to open an item, glance at it, close it, and move on.

Use an Animated Transition as the item opens and closes, to keep the user oriented and to
focus attention on the newly opened item.

If your application permits the user to edit items, you could use a List Inlay to open an edi-
tor instead of item details (or in addition to them).

A list that uses List Inlays works the same way as an Accordion: everything lies in a single
column, with panels opening and closing in situ within it. Likewise, a Two-Panel Selector
works like a set of tabs, and One-Window Drilldown is like a Menu Page (Chapter 3).

Examples

Google Reader (Figure 5-8) uses a List Inlay within the context of a Two-Panel Selector. It
has a multi-level hierarchy of containers to present; the containers are shown in the tree
selector on the left, but the list of articles takes up Center Stage and the user can then open
them in place to read them.

208  Chapter 5:  Lists of Things

Figure 5-8. Google Reader

The Patterns  209 

Rather than forcing the user to pogo-stick back and forth from the list of book reviews
to the actual text of each review, Amazon’s mobile site lets users read them in a List Inlay.
The list of items on the left tempts the user with short teasers from each review, and when
a user is interested enough to keep reading, she can tap the title to read the whole thing
(Figure 5-9). The existence of plus and minus controls signals to the user that these items
expand.

Figure 5-9. Amazon reviews on the iPhone

In other libraries

http://www.patternry.com/p=inline-expand/

Bill Scott and Theresa Neil identified this technique in their book, Designing Web
Interfaces (O’Reilly, http://oreilly.com/catalog/9780596516253/). List Inlays are one of a set
of inlay techniques that includes Dialog Inlays and Detail Inlays.

The Accordion pattern exists in many pattern libraries, including this one. Much of the
design advice proffered for Accordion can apply equally well to List Inlay. (There really isn’t
a huge practical difference between them.)

http://www.patternry.com/p=inline-expand/

210  Chapter 5:  Lists of Things

Thumbnail Grid

Figure 5-10. Hanna Andersson product listing

What

Arrange a list of visually interesting items into a “small multiples” grid of thumbnail im-
ages. Let the user select one or more thumbnails to view or manage those items.

Use when

The list items have small visual representations that uniquely identify them: images, logos,
screen captures, reduced photos, and so forth. These tend to be similar in size and style.
The list may be long, and it may be divided into Titled Sections (Chapter 4).

You want to show a little bit of metadata (information about the item) with each one, such
as its name and date, but you don’t need to show a lot of that—the picture should take up
most of the space devoted to the item.

The Patterns  211 

Users will want an overview of the whole list, and they may need to scan it quickly to find
a particular item of interest. Users may also need to select one or more items at a time for
moving, deleting, or viewing.

Why

A Thumbnail Grid is a dense, attractive presentation of large numbers of items. Related to
Grid of Equals (Chapter 4), this pattern creates a visual hierarchy that shows the list items
as peers, and a strong grid tends to draw the eye to that part of the page.

It might be easier to show the list items in text form, but sometimes pictures can be rec-
ognized and differentiated more easily than text.

Thumbnails that are roughly square make easy targets for fingertips (on touch screens)
and for indirect pointing devices as well. This pattern works well on mobile devices with
relatively high-resolution touch screens, such as iPhones.

How

Arrange the item thumbnails into a 2D grid. Scale the thumbnails so that they’re approxi-
mately the same size, to keep the grid tidy. Place the text metadata close to the thumbnail,
but in small print in order to maintain the thumbnail’s visual prominence.

Some Thumbnail Grids look much nicer when the thumbnails all have similar width and
height. If you’re working with graphics that come in different sizes or aspect ratios (the
ratio of width to height), or if they’re large, some image processing will need to be done to
construct thumbnails. Try to find a size and aspect ratio that works reasonably well with
all of them, even if some images will be cropped to fit it. (Reducing image size is easy;
cropping appropriately is not. Be careful to preserve the image’s integrity by choosing the
most relevant piece of the image to show, when possible.)

An exception is if you’re dealing with images whose size and proportion are useful infor-
mation to the viewer. For instance, a set of personal photos will contain some that are in a
landscape format and some in a portrait (vertical) format. There’s no need to crop these to
match an idealized thumbnail—the user will want to see which photos are which!

On the other hand, a thumbnail gallery of products (such as shoes or shirts) should all
have the same height and width, with the products presented consistently within those
photos.

212  Chapter 5:  Lists of Things

Examples

Mac OS Finder displays a variety of thumbnail types for a file directory listing (see Figure
5-11). When a file is an image, a shrunken version of that image is shown; for directories,
a simple folder; for files without an available visual, just the file type (e.g., “DOC”) over
a generic icon. The thumbnail grid is not at all uniform, so it doesn’t look as clean as the
others in this pattern, but the size and style variations communicate useful information
to the user.

Figure 5-11. Mac OS Finder

AIGA’s design archives (Figure 5-12) and YouTube (Figure 5-13) are two Picture Managers
that show no text information and lots of text information, respectively.

The Patterns  213 

Figure 5-12. AIGA design archives

Figure 5-13. YouTube

214  Chapter 5:  Lists of Things

Zappos (Figure 5-14) and Hanna Andersson (Figure 5-10, at the top of the pattern) dem-
onstrate nicely designed Thumbnail Grids for product galleries. Uniformity is beautiful
here—the similarities and differences between products show up with stunning clarity,
and a strong visual rhythm exists on the page.

Figure 5-14. Zappos

Mobile devices need Thumbnail Grids in many contexts: to show applications, features, and
images themselves. Note the relative sizes of the thumbnails in Figure 5-15; the Google
Images and iPhone home screen examples are just big enough to be touched easily by
human fingertips. The Facebook example is more relaxed, with more space around each
item.

The Patterns  215 

Figure 5-15. Thumbnail Grids on the iPhone: Facebook, Google Images, and the home screen

In other libraries

http://ui-patterns.com/patterns/Thumbnail

Carousel

Figure 5-16. Marriott

What

Arrange a list of visually interesting items into a horizontal strip or arc, and let the user
scroll or swipe the image thumbnails back and forth to view them. Enlarge the center
item, if appropriate.

http://ui-patterns.com/patterns/Thumbnail

216  Chapter 5:  Lists of Things

Use when

The list items have visual representations that uniquely identify them: images, logos,
screen captures, reduced photos, and so forth. These tend to be similar in size and style.
The list is flat (i.e., not divided into categories or containers).

You want to show a little bit of metadata (information about the item) with each one, such
as its name and date, but you don’t need to show a lot of that—the picture should take up
most of the space devoted to the item.

Each item is potentially of interest. Users will browse the items casually; they won’t nor-
mally search for a specific item, or need to get an overall look at the entire list at once.
If someone does look for a specific item, he won’t mind moving past many items before
finding the one he’s looking for. You may be able to order the items with the most interest-
ing ones first, or in chronological order.

You don’t have enough vertical space for a Thumbnail Grid, and you may not have a lot of
horizontal space either, but you need to make this list look interesting and attractive.

Why

A Carousel offers an engaging interface for browsing visual items, encouraging the user
to inspect the items that are in view and to see what’s next. A user can’t easily jump to a
certain point deep in the list, so he has to scroll through everything—this pattern thus
encourages browsing and serendipity.

Carousels are compact vertically, so they may be a better solution than a Thumbnail Grid for
a small space. Horizontally, they can be either compact or spread out.

If a particular implementation focuses attention on a central item or selection, such as by
enlarging it, this pattern delivers “focus plus context”—users get a detailed view of one
item, while also seeing the ones immediately around it. See Chapter 7 for more discussion
of this principle.

How

First, create thumbnails for each item shown in the Carousel. See the Thumbnail Grid pat-
tern for issues related to thumbnail size and proportion (keeping in mind that Carousels
impose even stricter restraints—thumbnails of different size or aspect ratio tend to look
more awkward in Carousels than in Thumbnail Grids). Place the text metadata close to the
thumbnail, but in small print in order to maintain the thumbnail’s visual prominence.

In a horizontal scrolling widget, arrange the thumbnails horizontally, either randomly or
in an order that makes obvious sense to the user (such as by date). Show a small number
of them—fewer than 10—and hide the rest on either side. Put large arrows on the left and
right for paging through the Carousel; each click on an arrow should move more than one
item. Animate this scrolling for extra visual interest.

The Patterns  217 

If users will want to move quickly through a long list, as though they are looking for some-
thing in particular, put a scrollbar below the Carousel in addition to the arrows. You may
find that users do this a lot; if so, consider restructuring the list as a more conventional
vertical list, and add a “find” capability.

You may choose to enlarge the central item in the Carousel to draw attention to it. This
gives the Carousel single-selection semantics—the enlarged item is clearly the selected
one, and you can then do dynamic things based on that selection, such as showing text
details about it, or offering video controls if the items are video thumbnails.

Some Carousels are straight; some are curved or circular. These usually use the trick of a
3D perspective, in which items shrink and are partially obscured as they drift farther away
from the center.

In the mobile design space, the Filmstrip pattern (Chapter 10) is a variant on a Carousel.
Only one item at a time is shown on the small screen, and the user swipes or scrolls back
and forth to see other items.

Examples

Many websites use a basic, linear Carousel for browsing products. Amazon and Google
Books show book covers this way (see Figure 5-17); note the different amounts of text
metadata and the implications for design. How much information should be provided
with each book? How tightly packed should the book covers be?

Figure 5-17. Amazon and Google Books

218  Chapter 5:  Lists of Things

Apple and Flickr (Figures 5-18 and 5-19) provide horizontal scrollbars along with their
Carousels. These may contain a lot of items, so a scrollbar is needed for fast progress
through them. Note that Apple’s Carousel uses an Annotated Scrollbar (Chapter 3) to help
users find product categories. The horizontal aspect of this list makes for a graceful pre-
sentation of the product names, but it wouldn’t scale much beyond a small handful of
categories—it’s quite unusual to present a categorized list in a Carousel. Flat lists usually
work better.

Figure 5-18. Apple product carousel

Figure 5-19. Flickr organizational tools

Cover Flow (Figure 5-20) is essentially a media Carousel that enlarges the central, selected
item. Compare it to a curved Carousel in an Android app (Figure 5-21); these are similar
in behavior, but very different in visual styling.

Figure 5-20. Cover Flow in iTunes

The Patterns  219 

Figure 5-21. Sherpa for Android (image courtesy of http://www.androidtapp.com/sherpa-discover-your-
world/sherpa-nearest-dining-on-carousel/)

The New York Times presents some of its feature articles in a Carousel (see Figure 5-22).
These are the kinds of articles that may tempt a user to look at each one and browse
slowly; it wouldn’t work for all of the Times’ countless daily articles, since people mostly
skim the headlines and cherry-pick articles of interest. Features are different, however.

Figure 5-22. New York Times feature articles

In other libraries

http://developer.yahoo.com/ypatterns/selection/carousel.html

http://ui-patterns.com/patterns/Carousel

http://welie.com/patterns/showPattern.php?patternID=carrousel

http://www.androidtapp.com/sherpa-discover-your-world/sherpa-nearest-dining-on-carousel/
http://www.androidtapp.com/sherpa-discover-your-world/sherpa-nearest-dining-on-carousel/
http://developer.yahoo.com/ypatterns/selection/carousel.html
http://ui-patterns.com/patterns/Carousel
http://welie.com/patterns/showPattern.php?patternID=carrousel

220  Chapter 5:  Lists of Things

Row Striping

Figure 5-23. JetBlue

What

Use two similar shades to alternately color the backgrounds of the table rows.

Use when

Your interface presents data in a large multicolumn table, but the table’s rows are difficult
to separate visually. Users will need to look up specific data items in the table.

Why

Blocks of gentle color define and delineate the information contained inside them, even
when you can’t use whitespace to separate the data into “chunks.” Cartographers and
graphic designers have known this color-block technique for ages. (Remember that col-
ored backgrounds are also effective for defining page sections and articulating a visual
hierarchy. See Chapter 4 for more information.)

The Patterns  221 

When someone looks at a large data table with a single background color, she will tend to
see the columns as coherent objects due to proximity—the table entries in a column are
closer to one another than they are to the other entries in their rows. But you want the
viewer to read the table “row-wise” as well as column-wise. By coloring adjacent rows dif-
ferently, you turn the rows into coherent visual objects, too. (This takes advantage of the
Gestalt principles of continuity and closure; again, see Chapter 4.)

Specifically, Row Striping helps a user:

•	 Follow a row from left to right and back again, without confusing the rows

•	 See the “footprint” of the table itself, as separate from its containing page

However, Row Striping introduces more visual noise into the page. Some users in some
contexts may find that it slows them down or that it makes the table harder to use.

Two studies on Row Striping, also known as zebra striping, indicate that it has a small but
noticeable benefit for lookup speed and accuracy—under some conditions. The tables for
which lookup improved were fairly large, with many rows and several widely spaced col-
umns; a smaller table showed no benefit one way or the other. The researchers also noted
that when asked about it, users said they preferred Row Striping! See the two articles at
the following URLs for discussions of these studies, and for links to the original research
performed by Formulate Information Design:

http://www.alistapart.com/articles/zebrastripingdoesithelp/
http://www.alistapart.com/articles/zebrastripingmoredataforthecase/

How

Pick a pair of quiet, low-saturation colors that are similar in value but not identical. (In
other words, one needs to be a wee bit darker than the other.) Good choices are light blue
and white, beige and white, or two similar shades of gray—assuming the text on top of
them is dark. Generally, one of the colors is your page’s background color.

Alternate the color from row to row. If the rows are thin, you could also experiment with
grouping the rows—the first three are white, the next three are blue, and so on—but the
research described a few paragraphs up found that users preferred single-line striping.

http://www.alistapart.com/articles/zebrastripingdoesithelp/
http://www.alistapart.com/articles/zebrastripingmoredataforthecase/

222  Chapter 5:  Lists of Things

This pattern virtually eliminates the need for horizontal lines between the rows (though
you could use them if they are very thin and inconspicuous). If your columns are aligned
with one another, you don’t need vertical lines between them, nor a heavy border around
the table—the viewer’s sense of visual closure will kick in, and the row colors will define
the edges of the table for you. However, if row striping isn’t working well for your users,
you might try very thin horizontal lines instead, since they have a similar effect of forcing
the eye to see horizontal groups instead of vertical groups.

Examples

The JetBlue example at the top of the pattern (Figure 5-23) shows several lines per row.
The data itself is multiline and carefully formatted; some row separation other than
whitespace was needed here. Lightweight horizontal rules may have worked too, but Row
Striping makes coherent shapes out of the rows.

Single-row striping is more common. iTunes uses it to good effect, as shown in Figure 5-24.

Figure 5-24. iTunes

The Excel ledger spreadsheet shown in Figure 5-25 permits the user to change gridline
styles, and Row Striping is among the possibilities. This sheet makes it fairly easy to follow
the lines from left to right and back again.

The Patterns  223 

Figure 5-25. Excel ledger, with stripes

But look what happens when the gray row backgrounds are stripped away, as shown in
Figure 5-26. The columns suddenly become much stronger visually, and each row is harder
to read from left to right. Some designers, however, find this design to be cleaner and more
pleasing. There’s no absolutely correct answer about whether to use Row Striping or not.

Figure 5-26. Excel ledger, without stripes

224  Chapter 5:  Lists of Things

In other libraries

This technique is also known in many places as “alternating row colors” or “zebra strip-
ing.” Descriptions abound on the Web:

http://ui-patterns.com/patterns/AlternatingRowColors

http://www.welie.com/patterns/showPattern.php?patternID=zebra-table

http://quince.infragistics.com/Patterns/Alternating%20Row%20Colors.aspx

Pagination

Figure 5-27. Songza pagination control

What

Break up a very long list into pages, and load them one at a time. Provide controls for the
user to navigate the list—next, previous, first, and last pages.

Use when

You’re showing a list that might be very, very long. Most users will either look for a par-
ticular item or browse the top of the list for relevant items (e.g., with search results); in any
case, they won’t really want to see the entire list.

The technology you’re using doesn’t support loading the entire list into a single page or
scrolled area, for any of the following reasons:

•	 Loading the whole list would take too much time, and you don’t want to make the
user wait. This might be the case over a slow Internet connection or with a slow
backend server.

•	 Rendering the list would take too much time.

•	 The list is effectively “bottomless,” and implementing an Infinite List or a continuously
scrolling list (which both handle bottomless lists) isn’t feasible for some reason.

Why

Pagination breaks a list into chunks that a user can easily take in without being over-
whelmed. Furthermore, it puts the choice to see more into the user’s hands—do you want
to load more items from the list, or is this page of items enough for you?

http://ui-patterns.com/patterns/AlternatingRowColors
http://www.welie.com/patterns/showPattern.php?patternID=zebra-table
http://quince.infragistics.com/Patterns/Alternating Row Colors.aspx

The Patterns  225 

This pattern also has the advantage of being very common on the Web, especially (though
not exclusively) for search results. It’s easy to implement, and may come prebuilt in some
systems.

How

First, you’ll need to decide how many items will be in each page. Base this on the amount
of space each item takes up, the screen sizes users are likely to have (don’t forget to con-
sider mobile platforms), the time it takes to load or show the items, and the likelihood that
the user will find one or more desired items in the first page.

This is fairly important: the first page should be enough! The odds are good that most
users won’t go beyond that first page of items, so if they can’t find what they’re looking for
in that first page, they may get discouraged. (If you’re dealing with a search facility, make
sure that it returns high-quality results at the top of that first page.)

On pages that users may linger over, such as lists of products or videos, consider letting
the user set the number of items per page. Some people are irritated by having to page
back and forth to see all the items of interest.

Next, you’ll need to decide how to present the pagination controls. They’re usually found
at the bottom of the page, but some designs also have them at the top—if a user really does
need to go to a subsequent page of items, there’s no need to make him scroll all the way
down the page.

Consider these elements in the pagination control:

•	 Previous and Next links, with arrows or triangles for emphasis. Disable the Previous
link when the user is on the first page and the Next link when the user is on the last
page (if there is a known last page).

•	 A link to the first page. This should always be visible; remember that the first page is
supposed to contain the most relevant items.

•	 A sequence of numbered links to pages. Don’t link the page the user is on, of course;
instead, show it in a contrasting color and type size to give the user a “You are here”
navigational clue.

•	 Ellipses to cut out parts of the sequence if there are too many pages to reasonably
show in the control—more than 20, for instance. Again, keep the first page, and the
last page if the list isn’t “bottomless.” Keep the pages immediately before and after the
user’s current page. Elide the rest.

•	 Optionally, the total number of pages (if known). You could do this in several ways,
such as showing text like “Page 2 out of 45,” or simply showing the last page as a
numbered link at the end of the pagination control. See the examples for some ideas.

226  Chapter 5:  Lists of Things

Examples

Digg and Google both do an excellent job of including all the elements and cues from
the preceding list. The screenshots in Figure 5-28 show the most interesting pagination
control states: first and last pages for only a small number of items, and the first, middle,
and last pages for a very large number of items. Note that Digg uses ellipses to manage
large numbers, and Google simply omits the beginning and end of the range. Digg knows
exactly how many pages of items there are, whereas Google’s list is sometimes bottomless.
(The last Google example shows the last page of a search that wasn’t bottomless—it only
returned 21 pages of results.)

Figure 5-28. Digg and Google examples

Figure 5-29 shows a gallery of examples from all over the Web. Notice which ones are
easier to parse visually—Which link is which? Where should I click next?—and which
ones give you sufficient information about your location and the total number of pages.
Also note the size of the click targets. How accurate does the user have to be with her
mouse or fingertip?

The Patterns  227 

Figure 5-29. Counterclockwise from top: Kayak, Drupal.org, Flickr, Target, Last.fm, Mothering.com,
Amazon, eBay, YouTube, and Hulu

In other libraries

http://www.welie.com/patterns/showPattern.php?patternID=paging

http://ui-patterns.com/patterns/Pagination

http://www.patternry.com/p=search-pagination/

http://quince.infragistics.com/Patterns/Paging.aspx

The Yahoo! pattern library has two versions of the Pagination pattern, one for search and
one for other types of items:

http://developer.yahoo.com/ypatterns/navigation/pagination/item.html

http://developer.yahoo.com/ypatterns/navigation/pagination/search.html

http://www.welie.com/patterns/showPattern.php?patternID=paging
http://ui-patterns.com/patterns/Pagination
http://www.patternry.com/p=search-pagination/
http://quince.infragistics.com/Patterns/Paging.aspx
http://developer.yahoo.com/ypatterns/navigation/pagination/item.html
http://developer.yahoo.com/ypatterns/navigation/pagination/search.html

228  Chapter 5:  Lists of Things

Jump to Item

“C-h-i”

Figure 5-30. Font dialog on Mac OS

What

When the user types the name of an item into a table or tree, jump straight to that item
and select it.

Use when

The interface uses a scrolling list, table, drop down, combo box, or tree to present a long
list of items. These items are sorted, either alphabetically or numerically. The user wants
to select one particular item quickly and accurately, and preferably with the keyboard.

This pattern is often used in file finders, long lists of names, and drop-down boxes for state
or country selection. You can also use it for numbers—such as years or dollar amounts—
or even calendar time, such as months or days of the week.

Why

People aren’t good at scanning down long lists of words or numbers for a particular item.
But computers are. Let them do what they’re good at!

Another nice thing about this technique is that it lets the user keep her hands on the key-
board. As she moves through a form or dialog box, she might find it nice to select from a
list simply by typing the first few characters of the item she wants—the system then picks
the item for her, and she can continue on to the next thing. No scrolling or clicking is
necessary; the user’s hand never has to move from the keyboard to the mouse.

How

When the user types the first letter or number of the item she’s looking for, jump to the
first item that matches what the user typed: automatically scroll the list so that the item is
visible, and select it.

The Patterns  229 

As the user types more characters in rapid succession, keep changing the selection to the
first exact match for the whole user-typed string. If there is no match, stay put at the near-
est match, and don’t scroll back to the top of the list. You may want to beep at the user to
tell her that there’s no match—some applications do, some don’t.

Examples

A variant of Jump to Item is used by GNU Emacs’ incremental-search facility (see Figure
5-31). After the user enters i-search mode via Ctrl-S, each character typed brings the user
to the first instance of that cumulative string in the document. It doesn’t matter that the
original material wasn’t sorted.

Figure 5-31. Emacs

Once an occurrence of the string has been found, the user can find subsequent ones by
pressing Ctrl-S repeatedly. In some ways, this incremental search is more convenient—
and certainly faster—than typical desktop “Find” dialog boxes, which don’t update con-
tinuously as you type the search string.

Furthermore, Emacs can highlight all other instances of that string in the document in
addition to scrolling to the first one. This gives the user lots of extra contextual informa-
tion about the search she’s conducting. Is it a common string, or not? Are they clustered
together, or scattered?

230  Chapter 5:  Lists of Things

Alphabet Scroller

Figure 5-32. About.com

What

Show the letters of the alphabet arrayed along the scrollbar of an alphabetized list.

Use when

Users will be searching for very specific items in a long list, which is usually rendered as
a scrolled list, table, or tree. You want to make item finding as easy and quick to achieve
as possible.

Why

Alphabet scrollers are not common, but their use is self-explanatory. They provide an inter-
active map to the list content, in much the same way as an Annotated Scrollbar (Chapter 3).
They’re closely related to Jump to Item—both enable immediate jumping to a point in an
ordered list.

This pattern probably arose from physical books (such as dictionaries) and notebooks
(such as address books) that use tabs to mark points in the alphabet.

The Patterns  231 

How

Place a long alphabetized list into a scrolled area. Along the scrollbar, show the letters of
the alphabet; when the user clicks on a letter, scroll the list to that point (see Figure 5-32,
at the top of the pattern).

There are multiple operational examples of alphabetized lists working this way, but there
is no reason why another ordering—by number or by date, for example—couldn’t also
work well. Consider expanding this pattern beyond the alphabet!

Examples

The iPhone offers what is probably the best-known example of this pattern. Figure 5-33
shows its built-in Contacts app.

Figure 5-33. iPhone contacts list

232  Chapter 5:  Lists of Things

Cascading Lists

Figure 5-34. Mac OS font dialog

What

Express a hierarchy by showing selectable lists of the items in each hierarchy level.
Selection of any item shows that item’s children in the next list.

Use when

The list items are arranged in a hierarchy. The hierarchy might be deep, and it might have
many items on each level. A tree (outline) would work, but the user would have to scroll
up and down a lot to see all the items, and he wouldn’t get a good overview of the items at
higher levels in the hierarchy.

The hierarchy may be a literal one, such as a filesystem, or a conceptual one—this pattern
is often used to let a user navigate and choose items within categories or make a series of
interdependent choices, as with the fonts in the example in Figure 5-34 at the top of the
pattern.

The Patterns  233 

Why

By spreading the hierarchy out across several scrolled lists, you show more of it at once. It’s
that simple. Visibility is helpful when you’re dealing with complex information structures.
Also, laying the items out in lists organizes them nicely—a user can more easily keep track
of what level he’s dealing with than he could with an outline format, since the hierarchy
levels are in nice, predictable, fixed-position lists.

How

Put the first level of the hierarchy in the leftmost list (which should use single-selection
semantics). When the user selects an item in it, show that item’s children in the next list
to the right. Do the same with the child items in this second list; show its selected item’s
children in the third list. And so on.

Once the user reaches items with no children—the “leaf” items, as opposed to “branches”—
you might want to show the details of the last-selected item at the far right. An image file
typically displays a thumbnail; you might instead offer a UI for editing an item, reading
its content, or whatever is appropriate for your particular application.

A nice thing about this pattern is that you can easily associate buttons with each list: delete
the current item, move up, move down, and so on. Many toolkits will let you do this in
tree controls via direct manipulation, but for those that don’t have built-in tree controls,
this is a viable alternative.

Examples

The Mac OS Finder screenshot shown in Figure 5-35 is an extreme example, with seven
levels. But it shows that the pattern scales well, letting the user drill down into deep file-
system hierarchies while staying oriented. (Warning: this can be confusing for people who
aren’t familiar with this pattern and the concept of a hierarchy.)

Figure 5-35. Mac OS Finder

NeXTSTEP originally used this technique in its own File Viewer, circa 1990 or so. The
example in Figure 5-36 is from http://www120.pair.com/mccarthy/nextstep/intro.htmld/
Workspace.html.

http://www120.pair.com/mccarthy/nextstep/intro.htmld/Workspace.html
http://www120.pair.com/mccarthy/nextstep/intro.htmld/Workspace.html

234  Chapter 5:  Lists of Things

Figure 5-36. NeXTSTEP File Viewer

In other libraries

http://quince.infragistics.com/Patterns/Cascading%20Lists.aspx

Tree Table

Figure 5-37. Mac OS Finder

http://quince.infragistics.com/Patterns/Cascading Lists.aspx

The Patterns  235 

What

Put item fields in table-like columns, but use an indented outline structure in the first
column to illustrate the tree structure.

Use when

The items in a list are highly structured, with specific attributes that are of interest to
users. You can show them in a multicolumn list or table. But the items are primarily orga-
nized as a hierarchy, so you also want a tree to display them most of the time.

Your users are relatively sophisticated with respect to interface usage; this is not an easy
pattern for naive computer users to understand (and the same can be said about most
hierarchical views, including trees and Cascading Lists).

Why

Combining the two data-viewing approaches into one view gives you the best of both
worlds, at the cost of some visual and programming complexity. You can show the hierar-
chy of items, plus a matrix of additional data or item attributes, in one unified structure.

How

The examples show what you need to do: put the tree (really an outline) in the first col-
umn, and the item attributes in the subsequent columns. The rows—one item per row—
are usually selectable. Naturally, this can be combined with Sortable Tables to produce a
more browsable, interactive structure. Sorting on the columns disrupts the tree ordering,
so you’ll need to provide an extra button or some other affordance to re-sort the table into
the order required by the tree.

This technique seems to have found a home in email clients and news readers, where
threads of discussion form tree-like structures.

Examples

The Firefox browser once used a distinctive-looking Tree Table in one of its dialog boxes.
The separators—horizontal lines—help to visually group the items in different categories,
which isn’t a bad idea at all (see Figure 5-38).

236  Chapter 5:  Lists of Things

Figure 5-38. Firefox Bookmarks Manager, from an early version of the browser

In other libraries

http://quince.infragistics.com/Patterns/Tree-Table.aspx

New-Item Row

Figure 5-39. Microsoft Outlook

http://quince.infragistics.com/Patterns/Tree-Table.aspx

The Patterns  237 

What

Use the last or first row in the list or table to create a new item in place.

Use when

The interface contains a table, list, tree view, or any other vertical presentation of a set of
items (one item per row). At some point, the user needs to add new items to it. But you
don’t have a lot of room to spare on the UI for extra buttons or options, and you want to
make item creation very efficient and easy for the user.

Why

By letting the user type directly into the end (or the beginning) of the table, you put the
act of creation into the same place where the item will ultimately “live.” It’s conceptually
more coherent than putting it in some other part of the UI. Also, it makes the interface
more elegant than having an entirely different UI for item creation—it uses less screen
real estate, it reduces the amount of navigation that needs to be done (thus eliminating a
“jump” to another window), and it’s less work for your users.

How

Give the user an easy and obvious way to initiate a new object from the first empty table
row. A single mouse click in that row might start editing, for instance, or the row might
contain a “New Whatever” pushbutton, or it might contain a dummy item as shown at the
top of the pattern in Figure 5-39.

At that point, the UI should create the new item and put it in that row. Each column in
the table (if it’s a multicolumn table) should then be editable, thus letting the user set up
the values of that item. The cells could have text fields in them, or drop-down lists, or
whatever else is necessary to set the values quickly and precisely. As with any form-like
user input, Good Defaults (Chapter 8) help save the user work by prefilling those values;
the user doesn’t have to edit every column.

There are still some loose ends to clean up, though. What happens if the user abandons the
new item before finishing? You can establish a valid item right from the beginning—if the
user abandons the edits at any time, the item exists until the user goes back and deletes it.
Again, Good Defaults help by prefilling valid values if there are multiple fields.

Depending on how it’s implemented, this pattern can resemble Input Prompt (Chapter 8).
In both cases, a dummy value is set up for the user to edit into a real value, and that
dummy value is worded as a “prompt” that shows the user what to do.

Examples

Excel’s built-in spreadsheet templates, such as the one shown in Figure 5-40 for budget-
ing, mark the New-Item Row very clearly by putting a blue box around the entire row. The
PowerPoint outline view shown in Figure 5-41 affords creation of new slides by typing
into the bottom row, but the interface is subtler and hard to notice. (I went looking for this
feature before I found it; I never knew beforehand that it existed.)

Figure 5-40. New entry in an Excel ledger

Figure 5-41. New slide in a PowerPoint slideshow

In other libraries

http://quince.infragistics.com/Patterns/New-Item%20Row.aspx

http://www.welie.com/patterns/showPattern.php?patternID=list-entry-view

http://quince.infragistics.com/Patterns/New-Item Row.aspx
http://www.welie.com/patterns/showPattern.php?patternID=list-entry-view

Chapter 6

Doing Things: Actions and Commands

This chapter is devoted to the “verbs” in the interface. We’ve spent a lot of pages talking
about overall structure and flow, visual layout, and “nouns”—such as windows, text, links,
and static elements in pages. Chapter 7 spends even more pages on nouns, and Chapter 8
handles traditional (and a few nontraditional) controls and widgets: things that let users
supply information and set state, but that don’t actually do much.

So now let’s talk about buttons and menus.

Sounds exciting, doesn’t it? Probably not. Desktop interfaces have used menu bars as long
ago as the first Macintosh, and buttons for even longer. What we think of as “buttons” are
only a visual rendering of a physical device that long predated GUIs.

It’s true that there is a lot of history here, and there are many best practices to follow. The
standard platform style guides, such as those for Windows and Macintosh, will generally
get you pretty close to a workable UI. Most users depend upon learned conventions to
negotiate menus and find buttons, so it behooves you to follow those conventions, even
when they feel restrictive or nonsensical.

Common functionality such as cut, copy, and paste also carries lots of historical baggage—if
it could be reinvented now, it would probably work differently—but even moderately ex-
perienced desktop computer users have learned how it’s “supposed to work.” The same is
true for pop-up menus (context menus), which some users seem to look for everywhere,
and other users never think to look for at all. Drag-and-drop isn’t as bound by history,
but it absolutely has to work the way users intuitively expect it to, or the illusion of direct
manipulation is broken.

That being said, you can do many things to make your interface less dull and more usable.
Your goals should be to make the right actions available, label them well, make them easy
to find, and support sequences of actions. There are a few creative ways to do it.

240  Chapter 6:  Doing Things: Actions and Commands

First, I’ll list the common ways actions are rendered to the user:

Buttons
Buttons are placed directly onto the interface, without requiring the user to perform
any action to see them, and are usually grouped semantically. (See the Button Groups
pattern.) They’re big, readable, obvious, and extremely easy to use for even the most
inexperienced computer users. But they take up a lot of space on the interface, unlike
menu bars and pop-up menus. On landing pages, such as corporate home pages and
product startup pages, calls to action are usually represented as single, large, eye-
catching buttons—this is entirely appropriate for their purpose, which is to attract
attention and say, “Click me!”

Menu bars
Menu bars are standard on most desktop applications. They generally show an ap-
plication’s complete set of actions, organized in a mostly predictable way (such as
File, Edit, or View). Some actions operate on the entire application, and some operate
only on individually selected items. Menu bars often duplicate functionality found
in context menus and toolbars because they are accessible—screen readers can read
them, users can reach them via keyboard accelerators, and so on. (Accessibility alone
makes menu bars indispensable in many products.) Menu bars appear in some web
applications, especially productivity software, drawing programs, and other products
that emulate desktop apps.

Pop-up menus
Also known as context menus, pop-up menus are raised with a right-mouse click or
some similar gesture on panels or items. They usually list context-specific, common
actions, not all the actions that are possible on the interface. Keep them short.

Drop-down menus
Users raise these menus by clicking on a drop-down control such as a combo box.
However, drop-down controls are intended for selecting choices on a form, not for
performing actions. Avoid using them for actions.

Toolbars
The canonical toolbar is a long, thin row of iconic buttons. Often they have other
kinds of buttons or controls on them too, such as text fields or Dropdown Choosers
(see Chapter 8). Iconic toolbars work best when the portrayed actions have obvious
visual renderings; when the actions really need to be described with words, try other
controls, such as combo boxes or buttons with text labels. Cryptic icons are a classic
source of confusion and unusability.

Links
Buttons 9don’t need borders. Thanks to the Web, everyone understands that colored
text (especially blue text) usually indicates a clickable link. In a UI area where actions
are expected but where you don’t need to draw attention or clutter the page, you can

﻿  241 

use simple clickable “link” text for actions instead of buttons. When the user rolls the
mouse over the text, change the cursor and underline the text to reinforce the impres-
sion of clickability.

Action panels
These are essentially menus that the user doesn’t need to post; they’re always visible
on the main interface. They are a fine substitute for toolbars when actions are better
described verbally than visually. See the Action Panel pattern.

Hover tools
If you \want to show two or more actions for each item on an interface but you don’t
want to clutter the page with lots of repeated buttons, you can make those buttons
invisible until the mouse hovers over the item. (This is great for mouse-driven inter-
faces, but it doesn’t work well for touch screens.) See the Hover Tools pattern for more.

Then there are invisible actions, which don’t have any labels at all to announce what they
do. Users need to know (or guess) that they’re there, unless you put written instructions
on the UI. Therefore, they don’t help with discovery at all, since users can’t read over them
to find out what actions are possible. With buttons, links, and menus, the UI actions are
available for inspection, so users learn from those. In usability tests, I’ve seen many users
look at a new product and methodically walk down the menu bar, item by item, just to
find out what it can do.

That being said, you almost always need to use one or more of the following invisible ac-
tions. People often expect to be able to double-click on items, for example. However, the
keyboard (or the equivalent) is sometimes the only means of access for visually impaired
users and people who can’t use a mouse. In addition, the expert users of some operating
systems and applications prefer to work by typing commands into a shell and/or by using
its keyboard actions.

Double-clicking on items
Users tend to view double-clicking as either “open this item” or “do whatever the de-
fault thing is with this item,” depending on context. In a graphical editor, for instance,
double-clicking on an element often means opening a property sheet or specialized
editor for it. Double-clicking an application’s icon in most operating systems launch-
es that application. Double-clicking a piece of text might edit it in place.

Keyboard actions
Keyboard shortcuts, such as the well-known Ctrl-S to save, should be designed into
most desktop applications for accessibility and efficient use. The major UI platforms,
including Windows, Mac, and some Linux environments, each have style guides that
describe the standard shortcuts—and they’re all very similar. Additionally, menus
and controls often have underlined access keys, which let users reach those controls
without mouse-clicking or tabbing. (Press the Alt key, and then press the key corre-
sponding to the underlined letter, to invoke these actions.)

242  Chapter 6:  Doing Things: Actions and Commands

Drag-and-drop
Dragging and dropping items on an interface usually means either “move this here”
or “do this to that.” In other words, someone might drag a file onto an application
icon to say, “Open this file in that application.” Or she might drag that file from one
place in a file finder to another place, thus moving or copying the item. Drag-and-
drop is context-dependent, but it almost always results in one of these two actions.

Typed commands
Command-line interfaces generally allow free-form access to all the actions in the
software system, whether it’s an operating system or an application. I consider these
kinds of actions “invisible” because most command-line interfaces (CLIs) don’t eas-
ily divulge the available commands. They’re not very discoverable, though they’re
quite powerful once you learn what’s available—much can be done with a single well-
constructed command. As such, CLIs are best for users committed to learning the
software very well.

Pushing the Boundaries
Some application idioms give you freedom to design nonstandard buttons and controls.
Visual editors, media players, applications intended mostly for experts, instant messaging,
games, and anything that’s supposed to be fun and interesting all have users who might
be curious enough to figure out how to use unusual but well-designed interface elements.

Where can you be more creative? Consider the items on the first list in the preceding sec-
tion; visible buttons and menus are easier to use than invisible actions, such as keyboard
shortcuts. Generalizing from that, actions could be:

•	 Clickable icons

•	 Clickable text that doesn’t look like a button

•	 Something that reacts when the mouse pointer rolls over it

•	 Some object that looks like it may be manipulated by the user

•	 Something placed on almost any piece of screen real estate

But how much creativity can you get away with before the application becomes too hard
to figure out?

For a real-life example, we’ll look at the GarageBand application, shown in Figure 6-1.
There’s a lot going on in this interface. Some objects are obviously buttons, such as the
player controls—rewind, play, fast forward, and so forth—and the scrollbar arrows. You
will find some sliders and knobs, too.

Pushing the Boundaries  243 

Figure 6-1. GarageBand

But look harder at the far right of the window, between the red line and the wood-grain
edge. To your eyes, what pieces of the interface look clickable? Why? If you want, you can
look ahead to Figure 6-2 and cheat. (And if you already know GarageBand, please bear
with me.)

Draggable along the horizontal axis.
When you click “play,” the music starts
where the red bar is.

Also draggable along the horizontal axis.
This purple arrow defines the end of the song.

Brings up a menu of values for the time line grid:
1/2 note, 1/4 note, 1/8 note, etc.

Selectable “regions” of each track, which can
also be multiple-selected, dragged, and moved
from row to row.

Movable “spheres” that act like control points
for the volume: up to make it louder, down
to make it softer, side to side to adjust the
slope of the line.

The “playhead lock” button, whatever that does.

Resizes the window when dragged.

Click to move the slider all the
way down or all the way up.

Figure 6-2. GarageBand actions

244  Chapter 6:  Doing Things: Actions and Commands

Figure 6-2 shows which objects on the interface perform actions. You clearly couldn’t
have known what they all do, since this book doesn’t give you the benefit of tool tips, roll-
over cursors, or experimentation. But did you figure out that some of these objects could
be clicked or manipulated? I’m guessing you did.

How? You probably know that interfaces that look like this offer a lot of functionality
through direct manipulation, so you have good grounds for assuming that every interest-
ing visual feature does something. You might know that sliders, such as the volume slider
at the bottom, sometimes have “jump buttons” at the ends—and you might have recog-
nized the volume slider itself from iTunes. You might guess that tiny squarish icons tend
to be buttons, often for presentation-related actions; Word and PowerPoint use a lot of
them. You might have seen a vertical line topped with an inverted triangle in some other
context—maybe movable, maybe not. But didn’t this triangle look like it was movable?

When an object looks like it might let you do something, such as click it or drag it, we
say it “affords” performing that action. Traditional raised-edge buttons afford pushing; a
slider thumb affords dragging; a text field affords typing; a blue underlined word affords
clicking. And anything that reacts to the mouse cursor affords something, although you
can’t necessarily tell what!

Figure 6-2 points out the affordances in the GarageBand interface. This is an important
concept. In software interfaces, the user doesn’t get many sensory clues about what can be
tweaked or handled: visuals give most of the clues, and mouse rollovers do the rest. Use
them to communicate affordances well.

Here’s some specific design advice:

•	 Follow conventions whenever possible. Reuse UI concepts and controls that people
already know, such as the volume sliders in the example.

•	 Use pseudo-3D shading and drop shadows to make things look “raised.”

•	 When the mouse pointer hovers over items that can be clicked or dragged, turn the
pointer into something different, such as a finger or a hand.

•	 Use tool tips, or some other descriptive text, to tell the user what the objects under
the mouse pointer do. If you don’t need them, that’s great—you have a self-describing
design—but many users expect tool tips anyway.

The Patterns  245 

The Patterns
The first patterns in this chapter talk about three of the many ways to present actions.
When you find yourself reflexively putting actions on an application’s menu bar or pop-
up menu, stop for a moment and consider using one of these instead.

1.	 Button Groups

2.	 Hover Tools

3.	 Action Panel

Prominent “Done” Button improves the single most important button on many web pages
and dialog boxes. Smart Menu Items is a technique for improving some of the actions you
put on menus; this is a very general pattern, useful for many kinds of menus (or buttons
or links).

4.	 Prominent “Done” Button

5.	 Smart Menu Items

We’d like it if all the user-initiated actions in an application could be completed instantly,
but that’s not reality. Preview shows the user what’s going to happen before a time-
consuming action is committed. Progress Indicator is a well-known technique for letting
the user know what’s going on while an operation proceeds, while Cancelability refers to a
UI’s ability to stop an operation when the user asks it to.

6.	 Preview

7.	 Progress Indicator

8.	 Cancelability

The last three patterns—Multi-Level Undo, Command History, and Macros—all deal with
sequences of actions. These three interlocking patterns are most useful in complex ap-
plications, especially those whose users are committed to learning the software well and
using it extensively. (That’s why the examples come from complex software such as Linux,
Photoshop, Word, and MATLAB.) Be warned that these patterns are not easy to imple-
ment. They require the application to model a user’s actions as discrete, describable, and
sometimes reversible operations, and such a model is very hard to retrofit into an ex-
isting software architecture. The Command pattern in the classic book Design Patterns
(Addison-Wesley Professional) is one good place to look for implementation advice.

And that’s as close as this book gets to implementation details. We’ll now return to the
realm of interface design.

9.	 Multi-Level Undo

10.	 Command History

11.	 Macros

246  Chapter 6:  Doing Things: Actions and Commands

Button Groups

1

3 4

2

Figure 6-3. Google Docs main screen header, with four button groups highlighted

What

Present related actions as a small cluster of buttons, aligned and with similar graphic
treatments. Create multiple groups if there are more than three or four actions.

Use when

There are many actions to show on the interface. You want to make sure they are all visible
all the time, but you need to visually organize them so that they’re not chaotic or hard to
sort out. Some of these actions are similar to each other—they have similar or comple-
mentary effects, for instance, or they operate with similar semantics—and they can thus
be assembled into groups of two to five.

Button Groups can be used for app-wide operations (such as Open or Preferences), item-
specific actions (Save, Edit, Delete), or any other scope. Actions with different scope
ought not to be grouped together, however.

Why

Button Groups help make an interface self-describing. Well-defined clusters of buttons are
easy to pick out of a complex layout, and because they’re so visible, they instantly com-
municate the availability of those actions. They announce, “These are the actions you’ve
got to work with in this context.”

The Gestalt principles discussed in Chapter 4 apply here. Proximity hints at relatedness;
if the buttons are all together, they probably do similar things. So does visual similarity;
if you make all the buttons the same dimensions, for instance, they look like they belong
together. Conversely, button groups that are separated in space—or that are different in
shape—imply unrelated groups of actions.

The Patterns  247 

Proper sizing and alignment help the Button Group form a larger composite visual shape
(this is the principle of closure).

How

Make a group out of the buttons in question. Label them with short but unambiguous
verbs or verb phrases, and don’t use jargon unless users expect it. Do not mix buttons that
affect different things or have different scope; separate them into different groups.

All buttons in the group should have the same graphic treatment: borders, color, height
and/or width, icon style, dynamic effects, and so on. You can line them up in a single col-
umn, or arrange them in a single row if they aren’t too wide.

(However, treat them differently if one action is a “primary” action, such as a Submit but-
ton on a web form. A primary action is an action that you want most users to take, or that
most users will expect to take. Give that button a stronger graphic treatment to make it
stand out among the others.)

If all the buttons in a group act on the same object or objects, put the Button Group to
the left or right of those objects. You could put them below the objects instead, but users
often have a “blind spot” at the bottom of complex UI elements such as multicolumn lists
and trees—the buttons may not be seen at all. To make them more visible, keep the rest
of the interface clean and uncluttered. If you have a specific design that works better with
the buttons at the bottom, usability-test it and find out. If there are enough buttons and
if they have icons, you could also put them on a toolbar or toolbar-like strip at the top of
the page.

By using Button Groups, you’re trying to avoid a crowded mess of buttons and links, or
perhaps a long and plodding list of actions with no apparent differentiation at all. With
this pattern, you create a miniature visual hierarchy of actions: the user can see at a glance
what’s related and what’s important.

Examples

Standard tools for WYSIWYG editors are often grouped by function. The two examples
shown in Figure 6-4, from Word and Flash Builder, show some common tools in group-
ings that actually aid recognition.

As shown in Figure 6-5, iTunes places Button Groups at each of the four corners of the
main window, plus the standard title bar buttons (such as close and minimize). When the
user browses the Music Store, even more actions are contained in the web-page-like third
panel (not shown)—links constitute many of the actions there—and a button for each
song in the table.

248  Chapter 6:  Doing Things: Actions and Commands

Figure 6-4. Microsoft Word and Adobe Flash Builder

There are no fewer than 13 buttons on this interface, and I’m not even counting the four
scrollbar buttons or the three clickable table headers. There’s a lot to do here, but thanks to
careful visual and semantic organization, the interface is never overwhelming.

Alternative
views

Standard title
bar buttons

Player
controls

Playlist
actions

Search

Figure 6-5. iTunes

In other libraries

http://quince.infragistics.com/Patterns/Button%20Groups.aspx

http://quince.infragistics.com/Patterns/Button Groups.aspx

The Patterns  249 

Hover Tools

Figure 6-6. Twitter

What

Place buttons and other actions next to the items they act upon, but hide them until the
user hovers the pointer over them.

Use when

There are many actions to show on the interface. You want a clean, uncluttered look most
of the time, but you have to put those actions somewhere, preferably on or next to the
items they act upon. You’ve already allocated the space to show those actions, but they just
make things too crowded and busy if they’re all visible all the time.

Hover Tools are commonly used in list interfaces, in which many small items—photos,
messages, search results, and so on—are displayed in a column or list. The user can per-
form a number of actions on each one.

You don’t intend the interface to be used with fingertips, as with a touchpad device—
you’re certain that almost all users will interact with your UI via a mouse. (If your UI is a
web page, consider carefully whether it should behave differently on a touchpad versus a
desktop or laptop platform.)

Why

Hover Tools reveal themselves exactly when and where they’re needed. They stay out of
sight otherwise, allowing the UI to remain clean and uncluttered. They appear when the
user requests them, and by appearing in response to the user’s gesture, they draw attention
to themselves.

250  Chapter 6:  Doing Things: Actions and Commands

Pop-up (right-click) menus, pull-down menus, and menu bars also meet these criteria,
but they are not discoverable enough for some kinds of interfaces—they’re best used on
traditional desktop applications, not web-based interfaces. (And sometimes they’re not
the best choice on traditional applications, either.) Hover Tools are more easily discoverable
because the gesture that produces them—a rollover—is so simple and natural.

Unfortunately, Hover Tools currently don’t work so well on touch devices. A rollover with
a mouse is an easy, natural act that leads to discovery; but on a touchpad, the only way a
user can see the Hover Tools is if she actually touches the hover area, which is a more com-
mitting act. It doesn’t help much with discovery at all.

How

Design each item or hover area with enough space to show all the available actions. Hide
the ones that clutter the interface too much, and show them only when the user hovers the
mouse pointer over the area in question.

Respond quickly to the hover, and don’t use an Animated Transition—simply show the
tools immediately, and hide them immediately when the user moves the pointer away.
Likewise, never enlarge the hover area or otherwise rearrange the page when the user
hovers the pointer over it. The idea is to make the hover action as lightweight and quick
as possible so that the user can easily reach the necessary tools.

If the hover area is an item in a list, you may wish to highlight the item by changing its
background color or drawing a border around it. The act of showing tools will draw the
user’s eyes to that area, but highlighting the item will do so even more.

Consider Hover Tools as an alternative to a drop-down menu, a pop-up menu, an Action
Panel, a List Inlay with buttons in it, or a set of buttons repeated in each item.

Examples

Grooveshark uses Hover Tools to show per-song actions (see Figure 6-7). The alternatives
would have been to show all the tools all the time—busy, but not terrible—or to move the
tools to the top toolbar, where they would only operate on songs selected in the list. That’s
rather complicated for the designer, the programmer, and especially the user: she would
have to figure out how to select a song, and then make the spatial and logical connection
between the selected song(s) and the tools at the top of the table. In contrast, the Hover
Tools are right there and self-explanatory.

The Patterns  251 

Figure 6-7. Grooveshark

The benefit of the Hover Tools pattern is a cleaner interface, but one drawback is that the
user can’t immediately see the available actions. Zillow’s search results page, shown in
Figure 6-8, shows one possible compromise: “gray out” the tools normally, and show them
more strongly when the mouse hovers over the item.

Figure 6-8. Zillow

252  Chapter 6:  Doing Things: Actions and Commands

Some implementations of Hover Tools use a lightweight overlay to show buttons or con-
trols such as sliders. This is similar to the Dropdown Chooser pattern in Chapter 8, the
only difference being your intent to use it for actions and not settings. In Figure 6-9, the
YouTube player uses a hover to show the volume slider.

Figure 6-9. YouTube player

In other libraries

http://patternry.com/p=hover-reveal-tools/

http://www.flickr.com/photos/designingwebinterfaces/tags/hoverrevealtools/

Action Panel

Figure 6-10. iPhoto

What

Instead of using menus, present a group of related actions on a UI panel that’s richly or-
ganized and always visible.

http://patternry.com/p=hover-reveal-tools/
http://www.flickr.com/photos/designingwebinterfaces/tags/hoverrevealtools/
http://www.flickr.com/photos/designingwebinterfaces/tags/hoverrevealtools/

The Patterns  253 

Use when

You have a list of items, and a set of actions that can be performed on each one—too many
to show all the actions for each item, and too many for Hover Tools. You could put them
into a menu, but you may not have a menu bar at all, or you’d rather make the actions
more discoverable than they would be on menu bars. Same for pop-up menus; they’re just
not visible enough. Your users may not even realize the pop-up menus exist.

Or maybe your set of possible actions is too complex for a menu. Menus are best at show-
ing a flat set of actions (since pull-right menus, or cascading menus, are hard for some
users to manipulate) in a very simple, linear, one-line-per-item presentation. If your ac-
tions need to be grouped, and especially if those groups don’t fit the standard top-level
menu names—such as File, Edit, View, Tools, and so on—you might want a different
presentation altogether.

This pattern can take up a lot of screen space, so it’s not usually a good choice for small
devices.

Why

There are three main reasons to use Action Panels instead of menus or per-item buttons:
visibility, available space, and freedom of presentation.

By placing the actions out on the main UI and not hiding them inside a traditional menu,
you make those actions fully visible to the user. Really, Action Panels are menus in the
generic sense; they just aren’t found in menu bars, drop downs, or pop ups. Users don’t
have to do anything to see what’s on an Action Panel—it’s right there in front of them—so
your interface is more discoverable. This is particularly nice for users who aren’t already
familiar with the traditional document model and its menu bars.

There are many, many ways to structure objects on an interface: lists, grids or tables,
hierarchies, and just about any custom structure you can devise. But Button Groups and
traditional menus only give you a list (and not a very long one at that). An Action Panel is
free-form—it gives you as much freedom to visually organize verbs as you have for nouns.
Use it wisely!

How

Putting the Action Panel on the UI
Set aside a block of space on the interface for the Action Panel. Place it below or to the side
of the target of the action. The target is usually a list, table, or tree of selectable items, but
it might also be a document in Center Stage (Chapter 4). Remember that proximity is im-
portant. If you place the Action Panel too far away from whatever it acts on, users may not
grasp the relationship between them.

254  Chapter 6:  Doing Things: Actions and Commands

The panel could be a simple rectangle on the page. It could be one of several tiled panels
on the page, perhaps a Movable Panel (see Chapter 4), a “drawer” in Mac OS X, or even a
separate window. If it’s closable, make it very easy to reopen, especially if those actions are
present only on the Action Panel and aren’t duplicated on a menu!

Odds are good that you’ll need to show different actions at different times. So, the con-
tents of the action panel may depend on the state of the application (e.g., are there any
open documents yet?), on the items selected in some list somewhere, or other factors. Let
the Action Panel be dynamic. The changes will attract the user’s attention, which is good.

Structuring the actions
Next, you need to decide how to structure the actions you need to present. Here are some
ways you could do it:

•	 Simple lists

•	 Multicolumn lists

•	 Categorized lists, such as the PowerPoint example earlier

•	 Tables or grids

•	 Trees

•	 Any combination of these in one panel

If you categorize the actions, consider using a task-centered approach. Group them ac-
cording to what people intend to do. However, try to present them linearly. Imagine read-
ing the actions aloud to someone who can’t see the screen—can you proceed through
them in a logical fashion, with obvious start and end points? That, of course, is how a
blind user would “hear” the interface.

Labeling the actions
For each action’s label, you could use text, icons, or both, depending on what conveys the
nature of the actions best. In fact, if you use mostly icons, you end up with…a traditional
toolbar! (Or a palette, if your UI is a visual builder-style application.)

Text labels on an Action Panel can be longer than those on a menu or a button. You can use
multiline labels, for instance—no need to be overly parsimonious with words here. Just
remember that longer, more descriptive labels are better for first-time or infrequent users
who need to learn (or be reminded) what these actions do. The extra space spent on long
labels may not be appreciated in high-performance interfaces used mostly by experienced
users. If there are too many words, even first-time users’ eyes will glaze over.

The Patterns  255 

Examples

The example in Figure 6-10 is from iPhoto. Other Picture Managers, such as Picasa (Figure
6-11), use similar panels to contain per-image actions. Compare the complexity of the
Picasa Action Panel with the relatively simple one in iPhoto; both work for their particular
audiences and needs (iPhoto for novice users, Picasa for more experienced users).

Figure 6-11. Picasa

The screenshot of Windows Finder in Windows XP (see Figure 6-12) shows a directory
of pictures with an Action Panel attached to it. Microsoft calls this feature a Task Pane. The
panel is composed of closable subpanels (see the Collapsible Panels pattern in Chapter 4),
each of which contains a manageable handful of related actions.

Note that the first two sections, Picture Tasks and File and Folder Tasks, are completely
task-oriented: they’re phrased as verbs (View, Order, Print, and Copy), and they anticipate
actions that users will commonly want to perform. But the third section in this panel,
Other Places, is a list of objects instead.

256  Chapter 6:  Doing Things: Actions and Commands

Figure 6-12. Windows Finder

In other libraries

Other web resources often call this pattern a Task Pane, including this pattern from
Infragistics:

http://quince.infragistics.com/Patterns/Task%20Pane.aspx

http://quince.infragistics.com/Patterns/Task Pane.aspx

The Patterns  257 

Prominent “Done” Button

Figure 6-13. Songza

What

Place the button that finishes a transaction at the end of the visual flow; make it big and
well labeled.

Use when

Whenever you need to put a button such as Done, Submit, OK, or Continue on your in-
terface, you should use this pattern. More generally, use a visually prominent button for
the final step of any transaction—such as an online purchase—or to commit a group of
settings.

Why

A well-understood, obvious last step gives your users a sense of closure. There’s no doubt
that the transaction will be done when that button is clicked; don’t leave them hanging,
wondering whether their work took effect.

Making that last step obvious is what this pattern is really about. Doing it well draws on
the layout concepts in Chapter 4—visual hierarchy, visual flow, grouping, and alignment.

How

Create a button that actually looks like a button, not a link; either use platform standards
for pushbuttons, or use a large or medium-size button graphic with bold colors and well-
defined borders. This will help the button stand out on the page, and not get lost among
other things.

http://quince.infragistics.com/Patterns/Task Pane.aspx

258  Chapter 6:  Doing Things: Actions and Commands

When labeling the button, prefer text labels to icons. They’re easier to understand for
actions such as this, especially since most users will look for a button labeled “Done” or
“Submit.” The text in that label can be a verb or a short verb phrase that describes what
will happen in the user’s terms—“Send,” “Buy,” or “Change Record” (for example) are
more specific than “Done,” and can sometimes communicate more effectively.

Place the button where the user is most likely to find it. Trace the task flow down through
the page or form or dialog box, and put the button just beyond the last step. Usually that
will be on the bottom and/or right of the page. Your page layouts may have a standard
place for them (see the Visual Framework pattern in Chapter 4), or the platform standard
may prescribe it; if so, use the standard place.

In any case, make sure the button is near the last text field or control. If it’s too far away,
the user may not find it immediately upon finishing her work, and she may go looking
for other affordances in her quest for “what to do next.” On the Web, users may end up
abandoning the page (and possibly a purchase) without realizing it.

Examples

Figure 6-14 shows a typical web form. You can see the action buttons without even read-
ing the labels, due to visual design alone:

•	 The blue color stands out. It’s a saturated color, it contrasts with the white back-
ground, and it echoes the blue of the headlines. (A white or light gray button with a
black border would blend into the form.)

•	 The graphic used for each button looks like a button. It’s a rounded or “pill” shape,
with a very slight drop shadow, which makes it pop out from the background. The
buttons are large, too.

•	 Both buttons are positioned directly under the body of the form itself. Both the task
flow (the user will work from top to bottom) and the visual flow bring the user’s eye
to rest at that button.

•	 Each button is set off by whitespace on its left, right, and bottom.

The Patterns  259 

Figure 6-14. OneHourCourses.com

JetBlue, Kayak, and Southwest (see Figure 6-15) use strong buttons on their home page
flight-search interfaces. These follow all the guidelines for Prominent “Done” Buttons, and
again, you can see them immediately. The corresponding American Airlines button, on
the other hand, gets lost in its form—it’s too small, too far removed from the end of the
form, too close to the form border, and too similar to other elements in the form to stand
out well (see Figure 6-16). Furthermore, the label “GO” isn’t as on-task as “Search” or
“Find flights.”

260  Chapter 6:  Doing Things: Actions and Commands

Figure 6-15. JetBlue, Kayak, and Southwest

Figure 6-16. American Airlines

The Patterns  261 

In other libraries

Some other pattern libraries define patterns that are very closely related, such as Primary
Action and Action Button. Luke Wroblewski, in his book Web Form Design (Rosenfeld
Media), discusses primary versus secondary actions in forms such as those described in
this pattern.

http://www.welie.com/patterns/showPattern.php?patternID=action-button

http://patternry.com/p=primary-secondary-actions/

http://quince.infragistics.com/Patterns/Primary%20Action.html

Smart Menu Items

Figure 6-17. Mac Mail

What

Change menu labels dynamically to show precisely what they will do when invoked.

Use when

Your UI has menu items that operate on specific documents or items, such as Close, or
that behave slightly differently in different contexts, such as Undo.

Why

Menu items that say exactly what they’re going to do make the UI self-explanatory. The
user doesn’t have to stop and figure out what object will be affected. She’s also less likely
to accidentally do something she didn’t intend, such as deleting “Chapter 8” instead of
“Footnote 3.” It thus encourages safe exploration.

http://www.welie.com/patterns/showPattern.php?patternID=action-button
http://www.welie.com/patterns/showPattern.php?patternID=action-button
http://patternry.com/p=primary-secondary-actions/
http://patternry.com/p=primary-secondary-actions/
http://quince.infragistics.com/Patterns/Primary Action.html

262  Chapter 6:  Doing Things: Actions and Commands

How

Every time the user changes the selected object (or current document, last undoable opera-
tion, etc.), change the menu items that operate on it to include the specifics of the action.
Obviously, if there is no selected object at all, you should disable the menu item, thus
reinforcing the connection between the item and its object.

Incidentally, this pattern could also work for button labels, or links, or anything else that
is a “verb” in the context of the UI.

What if there are multiple selected objects? There’s not a whole lot of guidance out there—
in existing software, this pattern mostly applies to documents and undo operations—but
you could write in a plural, as in “Delete Selected Objects.”

Examples

Figure 6-18 shows a menu from Illustrator’s menu bar. The last filter the user applied in
this case was the “Drop Shadow” filter. The menu remembers that, so it changes its first
two items to (1) reapply the same filter again, and (2) modify the filter before reapplying.
(“Drop Shadow…” brings up the dialog box to modify it.) There are so many filters the
user might have applied that it’s quite useful to be reminded of the last one. And the ac-
celerator keystrokes are handy for repeated application of the same filter!

Figure 6-18. Illustrator

The previous two examples are from application menu bars, but this pattern can also be
used effectively in per-item tools, such as the drop-down menu in Gmail (see Figure 6-19).
The menu item “Add [person] to Contacts list” is much clearer and more self-explanatory
than a generic alternative, such as “Add sender to Contacts list.”

The Patterns  263 

Figure 6-19. Gmail menu

Preview

Figure 6-20. PowerPoint print dialog

What

Show users a preview or summary of what will happen when they perform an action.

264  Chapter 6:  Doing Things: Actions and Commands

Use when

The user is just about to perform a “heavyweight” action, such as opening a large file,
printing a 10-page document, submitting a form that took time to fill out, or commit-
ting a purchase over the Web. The user wants some assurance that he’s doing it correctly.
Doing it incorrectly would be time-consuming or otherwise costly.

Alternatively, the user might be about to perform some visual change with a hard-to-
predict result, such as applying a filter to a photo. He wants to know in advance whether
the effect will be desirable.

Why

Previews help prevent errors. A user may have made a typo, or he may have misunder-
stood something that led to the action in question (such as purchasing the wrong item
online). By showing him a summary or visual description of what’s about to happen, you
give him a chance to back out or correct any mistakes.

Previews can also help an application become more self-describing. If someone’s never
used a certain action before, or doesn’t know what it will do under certain circumstances,
a preview explains it better than documentation—the user learns about the action exactly
when and where he needs to.

How

Just before the user commits an action, display whatever information gives him the clear-
est picture of what’s about to happen. If it’s a print preview, show what the page will look
like on the chosen paper size; if it’s an image operation, show a close-up of what the image
will look like; if it’s a transaction, show a summary of everything the system knows about
that transaction. Show what’s important—no more, no less.

Give the user a way to commit the action straight from the preview page. There’s no need to
make the user close the preview or navigate elsewhere.

Likewise, give the user a way to back out. If he can salvage the transaction by correcting in-
formation previously entered, give him a chance to do that too, with “Change” buttons next
to changeable information. In some wizards and other linear processes, this might just be a
matter of navigating a few steps backward.

Examples

Picasa permits users to apply one of several filters to a photo (see Figure 6-21). Each filter
has a preview thumbnail associated with it—what you see really is what you get! A user
might need to experiment with many similar filters before finding one that has the desired
effect, and he wants quick turnaround. This is a classic preview situation. (Photoshop and
other image processing applications use similar previews.)

The Patterns  265 

Figure 6-21. Picasa

Online product builders and customizers often use Previews to show what the user has
created so far. The customizable Starbucks card in Figure 6-22 is a good example: in this
review step, the user has a chance to go back and change things, or move ahead with card
creation, or ask for help, or abandon the whole transaction.

Figure 6-22. Starbucks card customizer

266  Chapter 6:  Doing Things: Actions and Commands

In other libraries

http://quince.infragistics.com/Patterns/Preview.aspx

http://ui-patterns.com/patterns/LivePreview

The book Designing Web Interfaces by Bill Scott and Theresa Neil (O’Reilly, http://oreilly.
com/catalog/9780596516253/) also describes a \\. (Live Preview differs from Preview in
that it shows changes immediately as they are made.)

Progress Indicator

Figure 6-23. Mac OS Copy dialog

What

Show the user how much progress has been made so far on a time-consuming operation.

Use when

A time-consuming operation interrupts the UI, or runs in the background, for longer
than two seconds or so.

Why

Users get impatient when the UI just sits there. Even if you change the mouse pointer to a
clock or hourglass (which you should in any case, if the rest of the UI is locked out), you
don’t want to make a user wait for an unspecified length of time.

Experiments show that if users see an indication that something is going on, they’re much
more patient, even if they have to wait longer than they would without a Progress Indicator.
Maybe it’s because they know that “the system is thinking,” and it isn’t just hung or waiting
for them to do something.

How

Show an animated indicator of how much progress has been made. Either verbally or
graphically (or both), tell the user:

•	 What’s currently going on

•	 What proportion of the operation is complete

http://quince.infragistics.com/Patterns/Preview.aspx
http://quince.infragistics.com/Patterns/Preview.aspx
http://ui-patterns.com/patterns/LivePreview
http://ui-patterns.com/patterns/LivePreview

The Patterns  267 

•	 How much time remains

•	 How to stop it

As far as time estimates are concerned, it’s OK to be wrong sometimes, as long as your
estimates converge on something accurate quickly. But sometimes the UI can’t tell how
far along it is. In that case, show something animated that is noncommittal about percent-
ages. Think about the browsers’ image loops that keep rolling while a page loads.

Most GUI toolboxes provide a widget or dialog box that implements this pattern. Beware
of potentially tricky threading issues, however—the Progress Indicator must be updated
consistently while the operation itself proceeds uninhibited. If you can, keep the rest of
the UI alive, too. Don’t lock up the UI while the Progress Indicator is visible.

If it’s possible to cancel the operation whose progress is being monitored, offer a cancel
button or similar affordance on or near the Progress Indicator; that’s where a user is likely
to look for it. See the Cancelability pattern (next) for more information.

Examples

When a Flickr user uploads multiple image files (which can take awhile), Flickr displays a
rich and informative Progress Indicator (see Figure 6-24). It shows each file’s size, progress,
and status, along with an overall progress bar at the bottom. When the whole upload is
done, it tells you so boldly and directs you to the next logical activity. (Another nice touch
is that the page title itself gives you a percentage done.)

Figure 6-24. Flickr multiple upload progress indicator

268  Chapter 6:  Doing Things: Actions and Commands

Grooveshark’s interface takes a little while to load. Its Progress Indicator is a whimsical and
well-branded outline of a hammerhead shark, gradually filling left to right as the page
code loads (see Figure 6-25).

Figure 6-25. Grooveshark

In other libraries

http://quince.infragistics.com/Patterns/Progress%20Indicator.aspx

http://www.welie.com/patterns/showPattern.php?patternID=processing-page

The book Designing Web Interfaces also describes a Progress Indicator pattern.

http://quince.infragistics.com/Patterns/Progress Indicator.aspx
http://quince.infragistics.com/Patterns/Progress Indicator.aspx
http://www.welie.com/patterns/showPattern.php?patternID=processing-page
http://www.welie.com/patterns/showPattern.php?patternID=processing-page

The Patterns  269 

Cancelability

Figure 6-26. Firefox

What

Provide a way to instantly cancel a time-consuming operation, with no side effects.

Use when

A time-consuming operation interrupts the UI, or runs in the background, for longer
than two seconds or so—such as when you print a file, query a database, or load a large
file. Alternatively, the user is engaged in an activity that literally or apparently shuts out
most other interactions with the system, such as when working with a modal dialog box.

Why

Users change their minds. Once a time-consuming operation starts, a user may want to
stop it, especially if a Progress Indicator tells her that it’ll take awhile. Or the user may have
started it by accident in the first place. Cancelability certainly helps with error prevention
and recovery—a user can cancel out of something she knows will fail, such as loading a
page from a web server she realizes is down.

In any case, a user will feel better about exploring the interface and trying things out if she
knows that anything is cancelable. It encourages Safe Exploration (see Chapter 1), which in
turn makes the interface easier and more fun to learn.

How

First, find out if there’s a way to speed up the time-consuming operation so that it ap-
pears to be instantaneous. It doesn’t even have to be genuinely fast; if a user perceives it as
immediate, that’s good enough. On the Web or a networked application, this may mean
preloading data or code—sending it to the client before it’s asked for—or sending data
in increments, showing it to the user as it comes in. Remember, people can only read so
fast. You might as well use the loading time to let the user read the first page of data, then
another page, and so on.

270  Chapter 6:  Doing Things: Actions and Commands

But if you really do need Cancelability, here’s how to do it. Put a Cancel button directly on
the interface, next to the Progress Indicator (which you are using, right?) or wherever the
results of the operation will appear. Label it with the word Stop or Cancel, and/or put an
internationally recognizable stop icon on it: a red octagon, or a red circle with a horizontal
bar, or an “X”.

When the user clicks or presses the Cancel button, cancel the operation immediately. If
you wait too long—for more than a second or two—the user may doubt that the cancel ac-
tually worked (or you may just dissuade him from using it, since he might as well wait for
the operation to finish). Tell the user that the cancel worked—halt the Progress Indicator,
and show a status message on the interface, for instance.

Multiple parallel operations present a challenge. How does the user cancel a particular
one and not others? The Cancel button’s label or tool tip can state exactly what gets can-
celed when it’s clicked (see the Smart Menu Items pattern for a similar concept). If the
actions are presented as a list or a set of panels, you might consider providing a separate
Cancel button for each action to avoid ambiguity.

Examples

The Adobe AIR install dialog, shown in Figure 6-27, is a simple, stripped-down example
of Cancelability.

Figure 6-27. Adobe AIR installation dialog

When long file-copy operations stack up in Mac OS, each can be separately canceled,
though they’re all shown in the same dialog (see Figure 6-28). This makes sense—none
of the copy operations depend on any of the others, and so any can be canceled without
affecting the others.

The Patterns  271 

Figure 6-28. Mac OS Copy dialog, with four copy operations

Multi-Level Undo

Figure 6-29. Photoshop

What

Provide a way to easily reverse a series of actions performed by the user.

272  Chapter 6:  Doing Things: Actions and Commands

Use when

You’re building a highly interactive UI that is more complex than simple navigation or
form fill-in. This includes mail readers, database software, authoring tools, graphics soft-
ware, and programming environments.

Why

The ability to undo a long sequence of operations lets users feel that the interface is safe
to explore. While they learn the interface, they can experiment with it, confident that they
aren’t making irrevocable changes—even if they accidentally do something “bad.” This is
true for users of all levels of skill, not just beginners.*

Once the user knows the interface well, she can move through it with the confidence
that mistakes aren’t permanent. If her finger slips and she hits the wrong menu item, no
complicated and stressful recovery is necessary; she doesn’t have to revert to saved files,
shut down and start afresh, or go ask a system administrator to restore a backup file. This
spares users wasted time and occasional mental anguish.

Multi-Level Undo also lets expert users explore work paths quickly and easily. For instance,
a Photoshop user might perform a series of filtering operations on an image, study the
result to see if she likes it, and then undo back to her starting point. Then she might try
out another series of filters, maybe save it, and undo again. She could do this without
Multi-Level Undo, but it would take a lot more time (for closing and reloading the image).
When a user works creatively, speed and ease of use are important for maintaining the
experience of flow. See Chapter 1 for more information, especially the Safe Exploration and
Incremental Construction patterns.

How

Undoable operations
The software your UI is built on first needs a strong model of what an action is—what it’s
called, what object it was associated with, and how to reverse it. Then you can build an
interface on it.

Decide which operations need to be undoable. Any action that might change a file or
database—anything that could be permanent—should be undoable, while transient or
view-related states often are not. Specifically, these kinds of changes are expected to be
undoable in most applications:

•	 Text entry for documents or spreadsheets

•	 Database transactions

*	 Alan Cooper and Robert Reimann devote an entire chapter to the undo concept in their book About Face 2.0:
The Essentials of Interaction Design (Wiley).

The Patterns  273 

•	 Modifications to images or painting canvases

•	 Layout changes—position, size, stacking order, or grouping—in graphics applications

•	 File operations, such as deleting or modifying files

•	 Creation, deletion, or rearrangement of objects such as email messages or spread-
sheet columns

•	 Any cut, copy, or paste operation

The following kinds of changes are generally not undoable. Even if you think you want to
go above and beyond the call of duty and make them undoable, consider that you might
thoroughly irritate users by cluttering up the “undo stack” with useless undos.

•	 Text or object selection

•	 Navigation between windows or pages

•	 Mouse cursor and text cursor locations

•	 Scrollbar position

•	 Window or panel positions and sizes

•	 Changes made in an uncommitted or modal dialog box

Some operations are on the borderline. Form fill-in, for instance, is sometimes undoable
and sometimes not. However, if tabbing out of a changed field automatically commits that
change, it’s probably a good idea to make it undoable.

(Certain kinds of operations are impossible to undo, but usually the nature of the applica-
tion makes that obvious to users with any experience at all. Impossible undos include the
purchase step of an e-commerce transaction, posting a message to a forum or chat room,
or sending an email—as much as we’d sometimes like that to be undoable!)

In any case, make sure the undoable operations make sense to the user. Be sure to define
and name them in terms of how the user thinks about the operations, not how the com-
puter thinks about them. You should be able to undo a block of typed text, for instance, in
chunks of words, not letter by letter.

Design an undo stack
Each operation goes on the top of the stack as it is performed. Each undo reverses the
operation at the top first, then the one below it, then the next, and so on. Redo works its
way back up the stack likewise.

274  Chapter 6:  Doing Things: Actions and Commands

The stack should be at least 10 to 12 items long to be the most useful, and longer if you
can manage it. Long-term observation or usability testing may tell you what your usable
limit is. (Constantine and Lockwood assert that having more than a dozen items is usually
unnecessary, since “users are seldom able to make effective use of more levels.”* Expert
users of high-powered software might tell you differently. As always, know your users.)

Presentation
Finally, decide how to present the undo stack to the user. Most desktop applications put
Undo/Redo items on the Edit menu. Also, Undo is usually hooked up to Ctrl-Z or its
equivalent. The best-behaved applications use Smart Menu Items to tell the user exactly
which operation is next up on the undo stack.

But see the screenshot at the top of this pattern (Figure 6-29) for a different, more vi-
sual presentation. Photoshop shows a scrolling list of the undoable operations—including
ones that were already undone (two are shown, in gray). It lets the user pick the point in
the stack that she wants to revert to. A visual command history like this can be quite use-
ful, even just as a reminder of what you’ve recently done. See the Command History pattern
for more information.

Examples

Figure 6-30 shows a more typical presentation of Multi-Level Undo. In this case, the user
typed some text and then inserted a table. The first undo removes the table. Once that’s
done, the following undo—the next action in the undo stack—represents the typed text,
and invoking Undo again will remove that text. Meanwhile, the user has the opportunity
to “undo the undo” with the Redo menu item. If we’re at the top of the stack (as in the
first screenshot), there is no Redo, and that menu item is overloaded with a Repeat action.

Confusing? You bet. Most users will never develop a clear mental picture of the algo-
rithms being used here; most people don’t know what a “stack” is, let alone how it is used
in conjunction with Repeat and Redo. That’s why the Smart Menu Items are absolutely
critical to usability here. They explain exactly what’s going to happen, which reduces the
cognitive burden on the user.

*	 Larry Constantine and Lucy Lockwood, “Instructive Interaction: Making Innovative Interfaces Self-Teaching,”
http://foruse.com/articles/instructive.htm.

http://time-tripper.com/uipatterns/index.php?page=Smart_Menu_Items

The Patterns  275 

Figure 6-30. Microsoft Word

In other libraries

http://patternry.com/p=undo/

http://quince.infragistics.com/Patterns/Undo.aspx

Command History

Figure 6-31. MATLAB’s command history, show in the lower left

What

As the user performs actions, keep a visible record of those actions—what was done to
what, and when.

http://patternry.com/p=undo/
http://patternry.com/p=undo/
http://quince.infragistics.com/Patterns/Undo.aspx
http://quince.infragistics.com/Patterns/Undo.aspx

276  Chapter 6:  Doing Things: Actions and Commands

Use when

Users perform long and complex sequences of actions, with either a GUI or a command
line. Most users are fairly experienced, or if not, they at least want an efficient interface
that’s supportive of long-term and recurring work. Graphical editors and programming
environments are usually good candidates.

Why

Sometimes a user needs to remember or review what he did in the course of working with
the software. For instance, he may want to do any of these things:

•	 Repeat an action or command done earlier, which he doesn’t remember well

•	 Recall the order in which some actions were done

•	 Repeat a sequence of operations, originally done to one object, on a different object

•	 Keep a log of his actions, for legal or security reasons

•	 Convert an interactive series of commands into a script or macro (see the Macros pat-
tern in this chapter)

Computers are good at keeping an accurate record of steps taken; people aren’t. Take
advantage of that.

How

Keep a running list of the actions taken by the user. If the interface is driven from a com-
mand line, you have it easy—just record everything typed there. If you can, keep track of
the history across sessions, so the user can see what was done even a week ago or longer.

If it’s a graphic interface, or a combination of graphic and command-line interfaces,
things get a little more complicated. Find a way to express each action in one consistent,
concise way, usually with words (though there’s no reason why it can’t be done visually).
Make sure you define these with the right granularity—if one action is done en masse to
17 objects, record it as one action, not 17.

What commands should be recorded, and what shouldn’t? See the Multi-Level Undo pat-
tern for a thorough discussion of what commands should “count.” If a command is undo-
able, it should be recorded in the history, too.

Finally, display the history to the user. That display should be optional in most software,
since it will almost certainly play a supporting role in the user’s work, not a starring role.
Lists of commands—oldest to newest—tend to work well. If you’d like, you could time-
stamp the history display somehow. MATLAB, shown earlier in Figure 6-31, puts a date
and time into the history whenever the program restarts.

The Patterns  277 

Examples

Unix and its many variants use shell programs, such as tcsh and bash, that keep track of
their own command histories in files. The user can call it up with the “history” command,
as shown in Figure 6-32. The history is also accessible through various command-line
constructs, such as !! (reuse the last command), !3 (reuse the command issued three
commands ago), and Ctrl-P, which you can issue repeatedly to show the previous com-
mands one at a time.

Figure 6-32. Unix shell

Photoshop’s undo stack, also seen in the Multi-Level Undo pattern, is effectively a command
history. You can use it to undo the actions you performed, but you don’t have to; you can
also just look at it and scroll through it, reviewing what you did. It uses icons to identify
different classes of actions, which is unusual, but nice to use (see Figure 6-33).

Figure 6-33. Photoshop, again

278  Chapter 6:  Doing Things: Actions and Commands

Macros

Figure 6-34. Photoshop

What

Macros are single actions composed of other, smaller actions. Users can create them by
putting together sequences of actionsUse when:

Users may want to repeat long sequences of actions or commands. They might want to
loop over lists of files, images, database records, or other objects, for instance, doing the
same things to each object. You might already have implemented Multi-Level Undo or
Command History.

Why

No one wants to perform the same set of repetitive interactive tasks over, and over, and
over again! This is exactly what computers are supposed to be good at. Chapter 1 de-
scribed a user-behavior pattern called Streamlined Repetition; macros are precisely the
kind of mechanism that can support that well.

Macros obviously help users work faster. But by reducing the number of commands or
gestures needed to get something done, they also reduce the possibility of finger slips,
oversights, and similar mistakes.

You might also recall the concept of “flow,” also discussed in Chapter 1. When a long se-
quence of actions can be compressed down into a single command or keyboard shortcut,
the experience of flow is enhanced—the user can accomplish more with less effort and
time, and she can keep her larger goals in sight without getting bogged down in details.

The Patterns  279 

How

Provide a way for the user to “record” a sequence of actions and easily “play them back”
at any time. The playback should be as easy as giving a single command, pressing a single
button, or dragging and dropping an object.

Defining the macro
The user should be able to give the macro a name of her choice. Let her review the action
sequence somehow, so she can check her work or revisit a forgotten sequence to see what
it did (as in the Command History pattern). Make it possible for one macro to refer to an-
other, so they can build on each other.

Users will certainly want to save macros from one day to the next, so make sure they’re
persistent—save them to files or a database. Present them in a searchable, sortable, and
even categorizable list, depending on the needs of your users.

Running the macro
The macro itself could be played back literally, to keep things simple; or, if it acts upon an
object that can change from one invocation to another, you could allow the sequence to
be parameterized (e.g., use a placeholder or variable instead of a literal object). Macros
should also be able to act on many things at once.

How the names of the macros (or the controls that launch them) are presented depends
heavily upon the nature of the application, but consider putting them with built-in actions
rather than making them second-class citizens.

The ability to record these sequences—plus the facility for macros to build on one other—
create the potential for the user to invent an entirely new linguistic or visual grammar, a
grammar that is finely tuned to her own environment and work habits. This is a very pow-
erful capability. In reality, it’s programming; but if your users don’t think of themselves as
programmers, don’t call it that or you’ll scare them off. (“I don’t know how to program
anything; I must not be able to do this.”)

Examples

Microsoft Excel allows macros to be recorded, named, stored along with the document,
and even assigned to a keyboard shortcut. The user can also choose to run a macro from a
button on the toolbar, or an ActiveX control in the document itself (which means macros
can be used as callbacks for buttons, text fields, etc.).

The Excel macros shown in Figures 6-35 and 6-36 are written in Visual Basic, and the user
can hand-edit them if desired. This is when it becomes programming. Because Visual
Basic provides access to so much general-purpose functionality—most of it not directly
related to, say, spreadsheet operations—macros can be a serious security risk for Office

280  Chapter 6:  Doing Things: Actions and Commands

applications. By sharply constraining the functionality available to macros and by limiting
the number of ways users can run macros (e.g., only by clicking on toolbar buttons), you
can trade power for safety.

(Note that not all versions of Excel allow Visual Basic macros as of this writing.)

Figure 6-35. Excel macro recording

Figure 6-36. Excel macros, written in Visual Basic

Chapter 7

Showing Complex Data: Trees, Charts,
and Other Information Graphics

Information graphics—including maps, tables, and graphs—communicate knowledge vi-
sually rather than verbally. When done well, they let people use their eyes and minds to
draw their own conclusions; they show, rather than tell.

These are my favorite kinds of interfaces. However, poor tools or inadequate design can
sharply limit what you can do with them, and many information-rich interfaces just don’t
quite work as well as they could.

The patterns in this chapter will help you make the best of the tools you have, and intro-
duce you to some useful and interesting innovations in interactive information graphics.
The ideas described in this introduction can help you sort out which design aspects are
most important to you in a given interface.

The Basics of Information Graphics
Information graphics simply means data presented visually, with the goal of imparting
knowledge to the user. I’m including tables and tree views in that description because they
are inherently visual, even though they’re constructed primarily from text instead of lines
and polygons. Other familiar static information graphics include maps, flowcharts, bar
plots, and diagrams of real-world objects.

But we’re dealing with computers, not paper. You can make almost any good static design
better with interactivity. Interactive tools let the user hide and show information as she
needs it, and they put the user in the “driver’s seat” as she chooses how to view and explore
that information.

Even the mere act of manipulating and rearranging the data in an interactive graphic has
value—the user becomes a participant in the discovery process, not just a passive observ-
er. This can be invaluable. The user may not end up producing the world’s best-designed
plot or table, but the process of manipulating that plot or table puts her face to face with
aspects of the data that she may never have noticed on paper.

282  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Ultimately, the user’s goal in using information graphics is to learn something. But the
designer needs to understand what the user needs to learn. The user might be looking for
something very specific, such as a particular street on a map, in which case she needs to be
able to find it—say, by searching directly, or by filtering out extraneous information. She
needs to get a “big picture” only to the extent necessary to reach that specific data point.
The ability to search, filter, and zero in on details is critical.

On the other hand, she might be trying to learn something less concrete. She might look
at a map to grasp the layout of a city rather than to find a specific address. Or she may
be a scientist visualizing a biochemical process, trying to understand how it works. Now
overviews are important; she needs to see how the parts interconnect with the whole. She
may want to zoom in, zoom back out again, look at the details occasionally, and compare
one view of the data to another.

Good interactive information graphics offer users answers to these questions:

•	 How is this data organized?

•	 What’s related to what?

•	 How can I explore this data?

•	 Can I rearrange this data to see it differently?

•	 How can I see only the data that I need?

•	 What are the specific data values?

In these sections, keep in mind that the term information graphics is a very big umbrella. It
covers plots, graphs, maps, tables, trees, timelines, and diagrams of all sorts; the data can
be huge and multilayered, or small and focused. Many of these techniques apply surpris-
ingly well to graphic types that you wouldn’t expect.

Before describing the patterns themselves, let’s set the stage by talking about some of the
questions posed in the previous list.

Organizational Models: How Is This Data Organized?
The first thing a user sees in any information visualization is the shape you’ve chosen for
the data. Ideally, the data itself has an inherent structure that suggests this shape to you.
Table 7-1 shows a variety of organizational models. Which of these fits your data best?

The Basics of Information Graphics  283 

Table 7-1. Organizational models

Model Diagram Common graphics

Linear List, single-variable plot

Tabular Spreadsheet, multicolumn list, Sortable Table, Radial
Table, Multi-Y Graph, other multivariable plots

Hierarchical Tree, Cascading Lists, Tree Table, Treemap, Radial
Table, directed graph

Network of interconnections Directed graph, flowchart, Radial Table

Geographic (or spatial) Map, schematic, scatter plot

Textual Word cloud, directed graph

Other Plots of various sorts, such as parallel coordinate plots,
Treemaps, etc.

Try these out against the data you’re trying to show. If two or more might fit, consider
which ones play up which aspects of your data. If your data could be both geographic
and tabular, for instance, showing it as only a table may obscure its geographic nature—a
viewer may miss interesting features or relationships in the data if it’s not shown as a map,
too.

Preattentive Variables: What’s Related to What?
The organizational model you choose tells the user a lot about the shape of the data.
Part of this message operates at a subconscious level; people recognize trees, tables, and
maps, and they immediately make some assumptions about the underlying data before
they even start to think consciously about it. But it’s not just the shape that does this. The
look of the individual data elements also works at a subconscious level in the user’s mind:
things that look alike must be associated with each other.

If you’ve read Chapter 4, that should sound familiar—you already know about the Gestalt
principles. (If you jumped ahead in the book, this might be a good time to go back and
read the introduction to Chapter 4.) Most of those principles, especially similarity and
continuity, will come into play here, too. I’ll tell you a little more about how they work.

284  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Certain visual features operate preattentively: they convey information before the viewer
pays conscious attention. Take a look at Figure 7-1 and find the blue objects.

Figure 7-1. Find the blue objects

I’m guessing that you can do that pretty quickly. Now look at Figure 7-2 and do the same.

Figure 7-2. Find the blue objects again

You did that pretty quickly too, right? In fact, it doesn’t matter how many red objects there
are; the amount of time it takes you to find the blue ones is constant! You might think it
should be linear with the total number of objects—order-N time, in algorithmic terms—
but it’s not. Color operates at a primitive cognitive level. Your visual system does the hard
work for you, and it seems to work in a “massively parallel” fashion.

On the other hand, visually monotonous text forces you to read the values and think
about them. Figure 7-3 shows exactly the same problem with numbers instead of colors.
How fast can you find the numbers that are greater than one?

The Basics of Information Graphics  285 

Figure 7-3. Find the values greater than one

When dealing with text such as this, your “search time” really is linear with the number
of items. But what if we still used text, but made the target numbers physically larger than
the others, as in Figure 7-4?

Figure 7-4. Find the values greater than one again

Now we’re back to constant time again. Size is, in fact, another preattentive variable. The
fact that the larger numbers protrude into their right margins also helps you find them—
alignment is yet another preattentive variable.

Figure 7-5 shows many known preattentive variables.

286  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Color hue

Color brightness

Color saturation

Texture

Position and alignment

Orientation

Size

Shape

Figure 7-5. Eight preattentive variables

This concept has profound implications for text-based information graphics, like the table
of numbers shown earlier in Figure 7-3. If you want some data points to stand out from
the others, you have to make them look different by varying their color, size, or some other
preattentive variable. More generally, you can use these variables to differentiate classes or
dimensions of data on any kind of information graphic. This is sometimes called encoding.

When you have to plot a multidimensional data set, you can use several different visual
variables to encode all those dimensions in a single static display. Consider the scatter plot
shown in Figure 7-6. Position is used along the x- and y-axes; color hue encodes a third
variable. The shape of the scatter markers could encode yet a fourth variable, but in this
case, shape is redundant with color hue. The redundant encoding helps a user visually
separate the three data groups.

All of this is related to a general graphic design concept called layering. When you look
at well-designed graphics of any sort, you perceive different classes of information on
the page. Preattentive factors such as color cause some of them to “pop” out of the page,
and similarity causes you to see those as connected to each other, as though each was on
a transparent layer over the base graphic. It’s an extremely effective way of segmenting
data—each layer is simpler than the whole graphic, and the viewer can study each in turn,
but relationships among the whole are preserved and emphasized.

The Basics of Information Graphics  287 

Figure 7-6. Encoding three variables in a scatter plot

Navigation and Browsing: How Can I Explore This Data?
A user’s first investigation of an interactive data graphic may be browsing—just looking
around to see what’s there. He may also navigate through it to find some specific thing
he’s seeking. Filtering and searching can serve that purpose too, but navigation through
the “virtual space” of a data set is often better. Spatial Memory (Chapter 1) kicks in, and the
user can see points of interest in context with the rest of the data.

There’s a famous mantra in the information visualization field: “Focus plus context.” A
good visualization should permit a user to focus on a point of interest, while simultane-
ously showing enough stuff around that point of interest to give the user a sense of where
it is in the big picture.

Here are some common techniques for navigation and browsing:

Scroll and pan
If the whole data display won’t fit on-screen at once, you could put it in a scrolled
window, giving the user easy and familiar access to the off-screen portions. Scrollbars
are familiar to almost everyone and are easy to use. However, some displays are too
big, or their size is indeterminate (thus making scrollbars inaccurate), or they have
data beyond the visible window that needs to be retrieved or recalculated (thus making
scrollbars too slow to respond). Instead of using scrollbars in those cases, try setting

288  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

up buttons that the user has to click to retrieve the next screenful of data. Other ap-
plications do panning instead, in which the information graphic is “grabbed” with the
cursor and dragged until the point of interest is found, like in Google Maps.

These are appropriate for different situations, but the basic idea is the same: to in-
teractively move the visible part of the graphic. Sometimes Overview Plus Detail can
help the user stay oriented. A small view of the whole graphic can be shown with an
indicator rectangle showing the visible “viewport”; the user might pan by dragging
that rectangle, in addition to using scrollbars or however else it’s done.

Zoom
Zooming changes the scale of the section being viewed, whereas scrolling changes the
location. When you present a data-dense map or graph, consider offering the user the
ability to zoom in on points of interest. It means you don’t have to pack every single
data detail into the full view—if you have lots of labels, or very tiny features (espe-
cially on maps), that may be impossible anyway. As the user zooms in, those features
can emerge when they have enough space.

Most zooms are triggered with a mouse click or button press, and the whole viewing
area changes scale at once. But that’s not the only way to zoom. Some applications
create nonlinear distortions of the information graphic as the user moves the mouse
pointer over the graphic: whatever is under the pointer is zoomed, but the stuff far
away from the pointer stays the same scale. See the Local Zooming pattern for more
information.

Open and close points of interest
Tree views typically let users open and close parent items at will, so they can inspect
the contents of those items. Some hierarchically structured diagrams and graphs also
give users the chance to open and close parts of the diagram “in place,” without hav-
ing to open a new window or go to a new screen. With these mechanisms, the user
can explore containment or parent/child relationships easily, without leaving that
window. The Cascading Lists pattern (Chapter 5) describes another effective way to
explore a hierarchy; it works entirely on single-click opening and closing of items.

Drill down into points of interest
Some information graphics just present a “top level” of information. A user might
click or double-click on a map to see information about the city she just clicked on, or
she might click on key points in a diagram to see subdiagrams. This “drilling down”
might reuse the same window, use a separate panel on the same window, or bring up
a new window. This technique is similar to opening and closing points of interest, ex-
cept that the viewing occurs separately from the graphic and is not integrated into it.

If you also provide a search facility for an interactive information graphic, consider link-
ing the search results to whichever of the aforementioned techniques is in use. In other
words, when a user searches for the city of Sydney on a map, show the map zooming and/
or panning to that point. The search user thus gets some of the benefits of context and
spatial memory.

The Basics of Information Graphics  289 

Sorting and Rearranging: Can I Rearrange This Data to
See It Differently?
Sometimes just rearranging an information graphic can reveal unexpected relationships.
Look at Figure 7-7, taken from the National Cancer Institute’s online mortality charts.
It shows the number of deaths from lung cancer in the state of Texas. The major metro-
politan regions in Texas are arranged alphabetically—not an unreasonable default order
if you’re going to look up specific cities, but as presented, the data doesn’t lead you to ask
very many interesting questions. It’s not clear why Abilene, Alice, Amarillo, and Austin all
seem to have similar numbers, for instance; it may just be chance.

Figure 7-7. Cancer data by city, sorted alphabetically

But this chart lets you reorder the data into numerically descending order, as in Figure
7-8. Suddenly the graph becomes much more interesting. Galveston is ranked first—
why is that, when its neighbor, Houston, is further down the scale? What’s special about
Galveston? (OK, you need to know something about Texas geography to ask these ques-
tions, but you get my point.) Likewise, why the difference between neighbors Dallas and
Fort Worth? And apparently the Mexico-bordering southern cities of El Paso, Brownsville,
and Laredo have less lung cancer than the rest of Texas; why might that be? You can’t an-
swer these questions with this data set, but at least you can ask them.

290  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Figure 7-8. The same chart, sorted numerically

People who can interact with data graphics this way have more opportunities to learn
from the graphic. Sorting and rearranging puts different data points next to each other,
thus letting users make different kinds of comparisons—it’s far easier to compare neigh-
bors than widely scattered points. And users tend to zero in on the extreme ends of scales,
as I did in the preceding example.

How else can you apply this concept? The Sortable Table pattern talks about one obvious
way: when you have a many-columned table, users might want to sort the rows according
to their choice of column. This pattern is pretty common. (Many table implementations
also permit rearrangement of the columns themselves, by dragging.) Trees might allow
reordering of their child nodes. Diagrams and connected graphs might allow spatial re-
positioning of their elements, while retaining their connectivity. Use your imagination!

Consider these methods of sorting and rearranging:

•	 Alphabetically

•	 Numerically

•	 By date or time

•	 By physical location

•	 By category or tag

•	 By popularity—heavily used versus lightly used

The Basics of Information Graphics  291 

•	 User-designed arrangement

•	 Completely random (you never know what you might see)

For a subtle example, take a look at Figure 7-9. Bar charts that show multiple data values
on each bar (known as stacked bar charts) might also be amenable to rearranging—the
bar segments nearest the baseline are the easiest to evaluate and compare, so you might
want to let users determine which variable is next to the baseline.

The light blue variable in this example might be the same height from bar to bar. Does it
vary, and how? Which light blue bars are the tallest? You really can’t tell until you move
that data series to the baseline—that transformation lines up the bases of all those blue
rectangles. Now a visual comparison is easy: light-blue bars 6 and 12 are the tallest, and
the variation seems loosely correlated to the overall bar heights.

Figure 7-9. Rearrangement of a stacked bar chart

Searching and Filtering: How Can I See Only the Data That I Need?
Sometimes you don’t want to see an entire data set at once. You might start with the whole
thing and narrow it down to what you need—filtering—or you might build up a subset
of the data via searching or querying. Most users won’t even distinguish between filtering
and querying (though there’s a big difference from, say, a database’s point of view). The
user’s intent is the same: to zero in on whatever part of the data is of interest, and get rid
of the rest.

The simplest filtering and querying techniques offer users a choice of which aspects of the
data to view. Checkboxes and other one-click controls turn parts of the interactive graphic
on and off. A table might show some columns and not others, per the user’s choice; a map
might show only the points of interest (e.g., restaurants) selected by the user. The Dynamic
Queries pattern, which can offer very rich interaction, is a logical extension of simple filter
controls such as these.

Sometimes simply highlighting a subset of the data, rather than hiding or removing the
rest, is sufficient. That way a user can see that subset in context with the rest of the data.
Interactively, you can do this with simple controls, as described earlier. The Data Brushing
pattern describes a variation of data highlighting; it highlights the same data in several
data graphics at once.

292  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Look at Figure 7-10. This interactive ski-trail map can show four categories of trails,
coded by symbol, plus other features such as ski lifts and base lodges. When everything
is “turned on” at once, it’s so crowded that it’s hard to read anything! But users can click
on the trail symbols, as shown, to turn the data “layers” on and off. The screenshot on
the left shows no highlighted trails; the one on the right switches on the trails rated black
diamond with a single click.

Figure 7-10. Interactive ski map

Searching mechanisms vary heavily from one type of graphic to another. A table or tree
should permit textual searches, of course; a map should offer searches on addresses and
other physical locations; numeric charts and plots might let users search for specific data
values or ranges of values. What are your users interested in searching on?

When the search is done and results obtained, you might set up the interface to show the
results in context, on the graphic—you could scroll the table or map so that the searched-
for item is in the middle of the viewport, for instance. Seeing the results in context with
the rest of the data helps the user understand the results better. The Jump to Item pattern
in Chapter 5 is a common way to search and scroll in one step.

The best filtering and querying interfaces are:

Highly interactive
They respond as quickly as possible to the user’s searching and filtering. (Don’t react
to individual keystrokes if it significantly slows down the user’s typing, however.)

The Basics of Information Graphics  293 

Iterative
They let a user refine the search, query, or filter until she gets the desired results.
They might also combine these operations: a user might do a search, get a screenful
of results, and then filter those results down to what she wants.

Contextual
They show results in context with surrounding data, to make it easier for a user to un-
derstand where they are in a data space. This is also true for other kinds of searches,
as it happens; the best text search facilities show the search terms embedded in sen-
tences, for instance.

Complex
They go beyond simply switching entire data sets on and off, and allow the user to
specify nuanced combinations of conditions for showing data. For instance, can this
information graphic show me all the items for which conditions X, Y, and Z are true,
but A and B are false, within the time range M–N? Such complexity lets users test
hypotheses about the data, and explore the data set in creative ways.

The Actual Data: What Are the Specific Data Values?
Several common techniques help a viewer get specific values out of an information graph-
ic. Know your audience—if they’re only interested in getting a qualitative sense of the
data, there’s no need for you to spend large amounts of time or pixels labeling every little
thing. But some actual numbers or text is usually necessary.

Since these techniques all involve text, don’t forget the graphic design principles that will
make text look good: readable fonts, appropriate font size (not too big, not too small),
proper visual separation between unrelated text items, alignment of related items, no
heavy-bordered boxes, and no unnecessary obscuring of data.

Labels
Many information graphics put labels directly on the graphic, such as town names on a
map. Labels can also identify the values of symbols on a scatter plot, bars on a bar graph,
and other things that might normally force the user to depend on axes or legends.
Labels are easier to use. They communicate data values precisely and unambiguously
(when placed correctly), and they’re located in or beside the data point of interest—no
going back and forth between the data point and a legend. The downside is that they
clutter up a graphic when overused, so be careful.

Legends
When you use color, texture, line style, symbols, or size on an information graphic
to represent values (or categories or value ranges), the legend shows the user what
represents what. You should place the legend on the same page as the graphic itself so
the user’s eyes don’t need to travel far between the data and the legend.

294  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Axes, rulers, scales, and timelines
Whenever position represents data, as it does on plots and maps (but not on most
diagrams), these tell the user what values those positions represent. They are refer-
ence lines or curves on which reference values are marked. The user has to draw an
imaginary line from the point of interest to the axis, and maybe interpolate to find the
right number. This is more of a burden on the user than direct labeling. But labeling
clutters things when the data is dense, and many users don’t need to derive precise
values from graphics; they just want a more general sense of the values involved. For
those situations, axes are appropriate.

Datatips
This chapter describes the Datatips pattern. Datatips, which are tool tips that show
data values when the user hovers over a point of interest, have the physical proxim-
ity advantages of labels without the clutter. They only work in interactive graphics,
though.

Data Spotlight
Like Datatips, a data spotlight highlights data when the user hovers over a point of
interest. But instead of showing the specific point’s value, it displays a “slice” of the
data in context with the rest of the information graphic, often by dimming the rest of
the data. See the Data Spotlight pattern.

Data brushing
A technique called data brushing lets users select a subset of the data in the informa-
tion graphic and see how that data fits into other contexts. You use this with two
or more information graphics; for instance, selecting some outliers in a scatter plot
causes those same data points to be highlighted in a table showing the same data. For
more information, see the Data Brushing pattern in this chapter.

The Patterns
Because this book is about interactive software, most of these patterns describe ways to
interact with the data: moving through it; sorting, selecting, inserting, or changing items;
and probing for specific values or sets of values. A few of them deal only with static graph-
ics: information designers have known about Multi-Y Graph and Small Multiples for a while
now, but they translate well to the world of software.

The Patterns  295 

And don’t forget the patterns elsewhere in this book. From Chapter 2, recall Alternative
Views, which can help you structure an interactive graphic. Chapter 3 offers Annotated
Scrollbar and Animated Transition, which help users to stay oriented within large and com-
plex data spaces. If your graphic is a table, you might also use some of the patterns in
Chapter 5, such as Row Striping, Alphabet Scroller, and Jump to Item.

The first group of patterns can be applied to most varieties of interactive graphics, regard-
less of the data’s underlying structure. (Some are harder to learn and use than others, so
don’t throw them at every data graphic you create—Data Brushing and Local Zooming in
particular, are “power tools,” best for sophisticated computer users.) These six interactive
tools permit users to focus on certain parts of the data set while maintaining the context
of the entire graphic.

1.	 Overview Plus Detail

2.	 Datatips

3.	 Data Spotlight

4.	 Dynamic Queries

5.	 Data Brushing

6.	 Local Zooming

The remaining patterns are ways to construct complex data graphics for multidimension-
al data—data that has many attributes or variables. They encourage users to ask different
kinds of questions about the data, and to make different types of comparisons among data
elements.

7.	 Sortable Table

8.	 Radial Table

9.	 Multi-Y Graph

10.	 Small Multiples

11.	 Treemap

296  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Overview Plus Detail

Figure 7-11. Perl community diagram (http://labs.linkfluence.net/fpw09/map/)

What

Place an overview of the graphic next to a zoomed “detail view.” As the user drags a view-
port around the overview, show that part of the graphic in the detail view.

Use when

You’re showing a large data set in a large information graphic—especially an image or a
map. You want users to stay oriented with respect to the “big picture,” but you also want
them to zoom down into the fine details. Users will browse through the data, inspect
small areas, or search for points of interest. High-level overviews are necessary for finding
those points of interest, but users don’t need to see all available detail for all data points at
once—zooming in on a small piece is sufficient for getting fine detail.

Why

It’s an age-old way of dealing with complexity: present a high-level view of what’s going on
and let the users zoom from that view into the details as they need to, keeping both levels
visible on the same page for quick iteration.

Edward Tufte uses the terms micro reading and macro reading to describe a similar con-
cept for printed maps, diagrams, and other static information graphics. The user has the
large structure in front of her at all times, while being able to peer into the small details at
will: “The pace of visualization is condensed, slowed, and personalized.” Similarly, users
of Overview Plus Detail can scroll methodically through the content, jump around, com-
pare, contrast, move quickly, or move slowly.

Finally, the overview can serve as a “You are here” sign. A user can tell at a glance where
she is in the context of the whole data set by looking for the viewport on the overview.

http://labs.linkfluence.net/fpw09/map/
http://labs.linkfluence.net/fpw09/map/
http://labs.linkfluence.net/fpw09/map/

The Patterns  297 

How

Show an overview of the data set at all times. It can be an inset panel, as in the example at
the top of the pattern (see Figure 7-11 at the top of the pattern). It could also be a panel
beside the detail view, or even another window, in the case of a multiwindow application
such as Photoshop.

On that overview, place a viewport. They’re usually red boxes by convention, but they
don’t have to be—they just need to be visible at a glance, so consider the other colors used
in the overview panel. If the graphic is typically dark, make it light; if the graphic is light,
make it dark. Make the viewport draggable with the pointer, so users can grab it and slide
it around the overview.

The detail view shows a magnified “projection” of what’s inside the viewport. The two
should be synchronized. If the viewport moves, the detail view changes accordingly; if the
viewport is made smaller, the magnification should increase. Likewise, if the detail view
has scrollbars or some other panning capability, the viewport should move along with it.
The response of one to the other should be immediate, within one-tenth of a second (the
standard response time for direct manipulation).

Examples

Photoshop places the image canvas (the “detail view”) on the left and the overview on the
right. The Navigator window shows the whole image, with a red box showing the size and
scroll position of the image’s canvas window (see Figure 7-12).

Figure 7-12. Photoshop

298  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Google Finance uses an interactive overview panel to let the user adjust the time period
shown on the graph. Note the grab handles on the viewport sides and the year labels that
tell the user what timescale the overview uses (see Figure 7-13).

Figure 7-13. Google Finance

The New York Times also uses a timeline to drive its infographic about environmental
change (see Figure 7-14). Users select events on the timeline to see details about them.
A Pyramid navigation pattern is also at work here: the user can jump to the next item by
clicking the Next button in the upper right.

Figure 7-14. The New York Times interactive feature (http://www.nytimes.com/interactive/2010/04/22/
science/earth/20100422_environment_timeline.html)

http://www.nytimes.com/interactive/2010/04/22/science/earth/20100422_environment_timeline.html
http://www.nytimes.com/interactive/2010/04/22/science/earth/20100422_environment_timeline.html

The Patterns  299 

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,226,17,0,0,247

http://quince.infragistics.com/Patterns/Overview%20Plus%20Detail.aspx

The broad concept of “overview and detail” can be found in numerous books on informa-
tion visualization, including those by Edward Tufte, mentioned earlier.

Datatips

Figure 7-15. SPOT Adventures live map

What

As the mouse rolls over a point of interest on the graphic, put the data values for that point
into a tool tip or some other floating window.

Use when

You’re showing an overview of a data set, in almost any form. More data is “hidden be-
hind” specific points on that graphic, such as the names of streets on a map or the values
of bars in a bar chart. The user is able to “point at” places of interest with a mouse cursor
or a touch screen.

http://www.nytimes.com/interactive/2010/04/22/science/earth/20100422_environment_timeline.html
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=99
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=99
http://quince.infragistics.com/Patterns/Overview Plus Detail.aspx
http://quince.infragistics.com/Patterns/Overview Plus Detail.aspx

300  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Why

Looking at specific data values is a common task in data-rich graphics. Users will want the
overview, but they might also look for particular facts that aren’t present in the overview.
Datatips let you present small, targeted chunks of context-dependent data, and they put
that data right where the user’s attention is focused: the mouse pointer. If the overview is
reasonably well organized, users will find it easy to look up what they need, and you won’t
need to put it all on the graphic. Datatips can substitute for labels.

Also, some people might just be curious. What else is here? What can I find out? Datatips
offer an easy, rewarding form of interactivity. They’re quick (no page loading!), they’re
lightweight, and they offer intriguing little glimpses into an otherwise invisible data set.

If you find yourself trying to use a Datatip to show an enlargement of the data that it’s
hovering over, rather than data values, consider using the Local Zooming pattern instead.

How

Use a tool tip–like window to show the data associated with that point. It doesn’t have to
be technically a “tool tip”—all that matters is that it appears where the pointer is, it’s lay-
ered atop the graphic, and it’s temporary. Users will get the idea pretty quickly.

Inside that window, format the data appropriately. Denser is usually better, since a tool tip
window is expected to be small; don’t let the window get so large that it obscures too much
of the graphic while it’s visible. And place it well. If there’s a way to programmatically posi-
tion it so that it covers as little content as possible, try that.

You might even want to format the Datatip differently depending on the situation. An
interactive map might let the user toggle between seeing place names and seeing latitude/
longitude coordinates, for example. If you have a few data sets plotted as separate lines on
one graph, the Datatips might be labeled differently for each line, or have different kinds
of data in them.

Many Datatips offer links that the user can click on. This lets the user “drill down” into
parts of the data that may not be visible at all on the main information graphic. The
Datatip is beautifully self-describing—it offers not only information, but also a link and
instructions for drilling down.

An alternative way of dynamically showing hidden data is to reserve some panel on or
next to the graphic as a static data window. As the user rolls over various points on the
graphic, data associated with those points appears in the data window. It’s the same idea,
but using a reserved space rather than a temporary Datatip. The user has to shift her at-
tention from the pointer to that panel, but you never have a problem with the rest of the
graphic being hidden. Furthermore, if that data window can retain its data, the user can
view it while doing something else with the mouse.

The Patterns  301 

In contemporary interactive infographics, Datatips often work in conjunction with a Data
Spotlight mechanism. The spotlight shows a slice through the data—for example, a line or
set of scattered points—while the Datatips shows the specific data point that’s under the
mouse pointer.

Examples

The San Francisco Crimespotting feature uses both Datatips (see Figure 7-16) and a Data
Spotlight. All incidents of theft are highlighted on the map (via the spotlight), but a Datatip
describes the particular incident at which the user is pointing. Note also the link to the
raw data about this crime.

Figure 7-16. San Francisco Crimespotting (http://sanfrancisco.crimespotting.org/)

Some data sets are so dense or text-rich that they can’t easily be labeled at all. The graph
from IBM’s Many Eyes project, shown in Figure 7-17, depends upon Datatips to commu-
nicate critical labels to the user. The Datatip offers plenty of space to express the text and
numbers of interest—far more than labels can. It also tells the user that clicking on this
part of the graph will highlight the relevant data—again, a Data Spotlight in action.

http://sanfrancisco.crimespotting.org/
http://sanfrancisco.crimespotting.org/

302  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Figure 7-17. Many Eyes graph (http://manyeyes.alphaworks.ibm.com/manyeyes/visualizations/us-
government-expenses-1962-2004)

So many geographic information graphics are built upon Google Maps that it deserves
a particular mention. Its API makes it fairly easy to create Datatips specialized to the ap-
plication’s needs, such as the SPOT Adventures example at the top of the pattern (Figure
7-15) and in the example in Figure 7-18.

Figure 7-18. California Stimulus Map (http://www.recovery.ca.gov/html/funding/stimulus%20map/
districtsmap.jsp)

http://manyeyes.alphaworks.ibm.com/manyeyes/visualizations/us-government-expenses-1962-2004
http://manyeyes.alphaworks.ibm.com/manyeyes/visualizations/us-government-expenses-1962-2004
http://manyeyes.alphaworks.ibm.com/manyeyes/visualizations/us-government-expenses-1962-2004
http://www.recovery.ca.gov/html/funding/stimulus map/districtsmap.jsp
http://www.recovery.ca.gov/html/funding/stimulus map/districtsmap.jsp

The Patterns  303 

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,237,17,0,0,258

http://quince.infragistics.com/Patterns/Data%20Tips.aspx

Data Spotlight

Figure 7-19. Google Public Data Explorer

What

As the mouse rolls over an area of interest on the graphic, highlight that slice of data and
dim the rest.

Use when

The graphic contains so much information that it tends to obscure its own structure. It
might be difficult for a viewer to pick out relationships and trace connections among the
data because of its sheer richness.

The data itself is structurally complex—it might have several independent variables and
complicated “slices” of dependent data such as lines, areas, scattered sets of points, or
systems of connections. (If the rolled-over data is merely a point or a simple shape, a
Datatip is a better solution than a Data Spotlight. They’re often used in conjunction with
each other, though.)

Why

A Data Spotlight untangles the threads of data from each other. It’s one way that you can
offer “focus plus context” on a complex infographic: a user eliminates some of the visual
clutter on the graphic by quieting most of it, focusing only on the data slice of interest.
However, the rest of the data is still there to provide context.

http://www.recovery.ca.gov/html/funding/stimulus map/districtsmap.jsp
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=110
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=110
http://quince.infragistics.com/Patterns/Data Tips.aspx
http://quince.infragistics.com/Patterns/Data Tips.aspx

304  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

It also permits dynamic exploration by letting a user flick quickly from one data slice to
another. She can see both large differences and very small differences that way—as long as
the Data Spotlight transitions quickly and smoothly (without flicker) from one data slice to
another as the mouse moves, even very tiny differences will be visible.

Finally, Data Spotlights can be fun and engaging to use.

How

First, design the information graphic so that it doesn’t initially depend on a Data Spotlights.
Try to keep the data slices visible and coherent so that a user can follow what’s going on
without interacting with the graphic. (Someone may print it, after all.)

To create a spotlight effect, make the spotlighted data either a light color or a saturated
color, while the other data fades to a darker or grayer color. Make the reaction very quick
on rollover to give the user a sense of immediacy and smoothness.

Besides triggering a spotlight when the mouse rolls over data elements, you might also put
“hot spots” onto legends and other references to the data.

Consider a “spotlight mode.” In this, the Data Spotlight waits for a longer initial mouse
hover before turning itself on. Once in that mode, the user’s mouse motions cause im-
mediate changes to the spotlight. This means the spotlight effect won’t be triggered acci-
dentally, when a user just happens to roll the mouse over the graphic. The Crimespotting
example (shown in Figure 7-20) does this.

An alternative to the mouse rollover gesture is a simple mouse click or finger tap. This
lacks the immediacy of rollovers, but it works on touchpads and it isn’t as subject to acci-
dental triggering. However, you may want to reserve the mouse click for a different action,
such as drilling down into the data.

Use Datatips to describe specific data points, describe the data slice being highlighted, and
offer instructions where necessary.

Examples

The San Francisco Crimespotting project puts a Data Spotlight on the different types of
crimes found in this geographic area. When the user hovers the mouse over a single data
element—a crime report—or over the legend that describes the crime types (shown in
Figure 7-20), all reports of that type are highlighted with light circles. The rest of the
graphic is darkened, in the style of a lightbox.

The Patterns  305 

Figure 7-20. San Francisco Crimespotting

The Washington Post’s interactive “Top Secret” graphic looks fine by itself, but the chart
is complicated and may be hard for a passive viewer to follow (see Figure 7-21). The Data
Spotlight lets the user easily see the information associated with a particular agency.

306  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Figure 7-21. The Washington Post’s interactive feature (http://projects.washingtonpost.com/top-secret-
america/)

Sometimes a graphic can’t easily show all the available data. The Radial Table graphic from
the Wall Street Journal, shown in Figure 7-22, uses a variety of interactive tools to let the
user explore the tracking-data connections among websites. Clicking on a cell shows spe-
cific relationships; rolling over nonclicked cells shows a “ghost” of the relationship lines.
The “Show all” command makes a graphic that looks interesting, but doesn’t give the user
much actionable information—the limited interactive views are far more interesting!

http://projects.washingtonpost.com/top-secret-america/
http://projects.washingtonpost.com/top-secret-america/
http://projects.washingtonpost.com/top-secret-america/

The Patterns  307 

Figure 7-22. Wall Street Journal interactive feature

308  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Dynamic Queries

Figure 7-23. Google Public Data Explorer

What

Provide ways to filter the data set immediately and interactively. Employ easy-to-use stan-
dard controls, such as sliders and checkboxes, to define which slices or layers of the data
set get shown. As the user adjusts those controls, show the results immediately on the data
display.

Use when

You’re showing the user a large, multivariate data set, of any shape, with any presentation.
Users need to filter out some of the data in order to accomplish any of several objectives—
to get rid of irrelevant parts of the data set, to see which data points meet certain criteria,
to understand relationships among the various data attributes, or simply to explore the
data set and see what’s there.

The data set itself has a fixed and predictable set of attributes (or parameters, variables,
dimensions, whatever term you prefer) that are of interest to users. They are usually nu-
meric and range-bounded; they might also be sortable strings, dates, categories, or enu-
merations (sets of numbers representing non-numeric values). Or they might be visible
areas of data on the information display itself that can be interactively selected.

Dynamic Queries can also apply to search results. Faceted searches might use a dynamic
query interface to let users explore a rich database of items, such as products, images, or
text.

The Patterns  309 

Why

First, Dynamic Queries are easy to learn. No complicated query language is necessary at the
user’s end; well-understood controls are used to express common-sense Boolean expres-
sions such as “price > $70 AND price < $100”. They lack the full expressive power of a query
language—only simple queries are possible without making the UI too complicated—but in
most cases, that’s enough. It’s a judgment call you have to make.

Second, the immediate feedback encourages open-ended exploration of the data set. As
the user moves a slider thumb, for instance, she sees the visible data contract or expand.
As she adds or removes different subsets of the data, she sees where they go and how
they change the display. She can concoct long and complex query expressions incremen-
tally, by tweaking this control, then that, then another. Thus, a continuous and interactive
“question and answer session” is carried on between the user and the data. The immediate
feedback shortens the iteration loop so that exploration is fun and a state of flow is pos-
sible. (See Chapter 1, Incremental Construction.)

Third—and this is a little subtler—the presence of labeled dynamic-query controls clari-
fies what the queryable attributes are in the first place. If one of the data attributes is a
number that ranges from 0 to 100, for instance, the user can learn that just by seeing a
slider that has 0 at one end and 100 at the other end.

How

The best way to design a dynamic query depends on your data display, the kinds of que-
ries you think should be made, and your toolkit’s capabilities. As mentioned, most pro-
grams map data attributes to ordinary controls that live next to the data display. This
allows querying on many variables at once, not just those encoded by spatial features on
the display. Plus, most people know how to use sliders and buttons.

Other programs afford interactive selection directly on the information display. Usually
the user draws a box around a region of interest and the data in that region is removed (or
retained while the rest of the data is removed). This is manipulation at its most direct, but
it has the disadvantage of being tied to the spatial rendering of the data. If you can’t draw
a box around it—or otherwise select points of interest—you can’t query on it! See the Data
Brushing pattern for the pros and cons of a very similar technique.

Back to controls, then: picking controls for dynamic queries is similar to the act of picking
controls for any kind of form—the choices arise from the data type, the kind of query to
be made, and the available controls. Some common choices include:

•	 Sliders to specify a single number within a range.

•	 Double sliders or slider pairs to specify a subset of a range: “Show data points that are
greater than this number, but less than this other number.”

310  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

•	 Radio buttons or drop-down (combo) boxes to pick one value out of several possible
values. You might also use these to pick entire variables or data sets. In either case,
“All” is frequently used as an additional metavalue.

•	 Checkboxes or toggles to pick an arbitrary subset of values, variables, or data layers.

•	 Text fields to type in single values, perhaps to be used in a Fill-in-the-Blanks context
(see Chapter 8). Remember that text fields leave more room for errors and typos than
do sliders and buttons, but are better for precise values.

Examples

The example in Figure 7-24 shows a set of six filters for a treemap (see the Treemap pattern
in this chapter). The checkboxes, filters 1 and 2, screen out entire swaths of data with two
very simple canned queries: is this item available, and does it have a picture?

The remaining filters use double sliders. Each has two independently movable slider
“thumbs” that let a user define a range. The Price slider sets a range of about $80 to about
$1,000 (admittedly not very realistic), and as the user moves either end of the range, the
whole treemap shifts and changes to reflect the new price range. The same is true for the
other sliders.

Figure 7-24. Hive Group treemap adjustment panel

The Patterns  311 

The San Francisco Crimespotting project (see Figure 7-25) offers a set of simple, com-
prehensible toggles to show crime data for different times of day—dark, light, commute,
swing shift, and so on. The user can also choose specific times of day with the clock-like
control. To narrow down the calendar dates, a long bar chart (itself a data display) permits
a range selection via a double slider, in addition to standard calendar drop downs.

Figure 7-25. San Francisco Crimespotting

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,231,17,0,0,252

http://www.infovis-wiki.net/index.php?title=Dynamic_query

Both the name and the concept for Dynamic Queries originated in the early 1990s with
several seminal papers by Christopher Ahlberg, Christopher Williamson, and Ben
Shneiderman. You can find some of these papers online, including the following:

http://hcil.cs.umd.edu/trs/91-11/91-11.html

http://hcil.cs.umd.edu/trs/93-01/93-01.html

http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=104
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=104
http://www.infovis-wiki.net/index.php?title=Dynamic_query
http://www.infovis-wiki.net/index.php?title=Dynamic_query
http://hcil.cs.umd.edu/trs/91-11/91-11.html
http://hcil.cs.umd.edu/trs/91-11/91-11.html

312  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Data Brushing

Figure 7-26. BBN Cornerstone

What

Let the user select data items in one view; show the same data selected simultaneously in
another view.

Use when

You can show two or more information graphics at a time. You might have two line plots
and a scatter plot, or a scatter plot and a table, or a diagram and a tree, or a map and a
timeline, whatever—as long as each graphic is showing the same data set.

Why

Data Brushing offers a very rich form of interactive data exploration. First, the user can se-
lect data points using an information graphic itself as a “selector.” Sometimes it’s easier to
find points of interest visually than by less direct means, such as Dynamic Queries—outliers
on a plot can be seen and manipulated immediately, for instance, while figuring out how
to define them numerically might take a few seconds (or longer). “Do I want all points
where X > 200 and Y > 5.6? I can’t tell; just let me draw a box around that group of points.”

Second, by seeing the selected or “brushed” data points simultaneously in the other
graphic(s), the user can observe those points in at least one other graphical context. That
can be invaluable. To use the outlier example again, the user might want to know where
those outliers are in a different data space, indexed by different variables—and by learn-
ing that, she might gain immediate insight into the phenomenon that produced the data.

The Patterns  313 

A larger principle here is coordinated or linked views. Multiple views on the same data can
be linked or synchronized so that certain manipulations—zooming, panning, selection,
and so forth—done to one view are simultaneously shown in the others. Coordination re-
inforces the idea that the views are simply different perspectives on the same data. Again,
the user focuses on the same data in different contexts, which can lead to insight.

How

First, how will users select or “brush” the data? It’s the same problem you’d have with any
selectable collection of objects: users might want one object or several, contiguous or
separate, selected all at once or incrementally. Consider these ideas:

•	 Drawing a rubber-band box around the data points (this is very common)

•	 Single selection by clicking with the mouse

•	 Selecting a range (if that makes sense) by Shift-clicking, as one can often do with lists

•	 Adding and subtracting points by Ctrl-clicking, also like lists

•	 Drawing an arbitrary “lasso” shape around the data points

•	 Inverting the selection via a menu item, button, or key

If you go exclusively with a rubber-band box, consider leaving the box on-screen after the
selection gesture. Some systems, such as Cornerstone, permit interactive resizing of the
brushing box. Actually, the user can benefit from any method of interactively expanding
or reducing the brushed set of points, because she can see the newly brushed points “light
up” immediately in the other views, which creates more possibility for insight.

As you can see, it’s important that the other views react immediately to Data Brushing.
Make sure the system can handle a fast turnaround.

If the brushed data points appear with the same visual characteristics in all the data views,
including the graphic where the brushing occurs, the user can more easily find them and
recognize them as being brushed. They also form a single perceptual layer (see the section
“Preattentive Variables: What’s Related to What?” on page 283). Color hue is the preattentive
variable most frequently used for brushing, probably because you can see a bright color
so easily even when your attention is focused elsewhere.

Examples

The screenshots shown in both Figures 7-26 and 7-27 are taken from Cornerstone, a sta-
tistics and graphing package. The three windows in Figure 7-27 represent a scatter plot,
a histogram of the residuals of one of the plotted variables, and a table of the raw data.
All views afford brushing; you can see the brushing box around two of the histogram’s
columns. Both plots show the brushed data in red, while the table shows it in gray. If you
“brushed” a car model in the table, you would see the dot representing that model appear
in red in the top plot, plus a red strip in the histogram.

314  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Figure 7-27. BBN Cornerstone, again

Maps lend themselves well to Data Brushing, because data shown in a geographic context
can often be organized and rendered in other ways as well. The following three examples
show map-based Data Brushing: images in a filmstrip-like line (from Flickr, Figure 7-28),
GPS tracker locations in chronological order (from SPOT Adventures, Figure 7-29), and
Foursquare checkins by a person going from one social event to another, also in chrono-
logical order (from Weeplaces, Figure 7-30). In all three examples, selection of items in
the linear view causes the items to “light up” in the map view. Flickr and SPOT also do the
reverse—they let the user select items on the map itself, so they light up in the linear view.

Figure 7-28. Flickr map (http://www.flickr.com/map/)

The Patterns  315 

Figure 7-29. SPOT Adventures live map

Figure 7-30. Weeplaces (http://weeplaces.com)

In other libraries

http://quince.infragistics.com/Patterns/Data%20Brushing.aspx

This pattern, called Linked Multiples, is a generalization of Data Brushing:

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,225,17,0,0,246

http://weeplaces.com
http://weeplaces.com
http://quince.infragistics.com/Patterns/Data Brushing.aspx
http://quince.infragistics.com/Patterns/Data Brushing.aspx
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=98

316  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Local Zooming

Figure 7-31. The DateLens calendar

What

Show all the data in a single dense page, with small-scale data items. Wherever the mouse
goes, distort the page to make those data items large and readable.

Use when

You’re showing a large data set using any organizational form—plots, maps, networks,
or even tables—on either a large or a small screen. The user is able to “point at” places of
interest with a mouse cursor or a touch screen.

Users will browse through the data or search for points of interest within that organiza-
tional structure (e.g., finding a date in a calendar). High-level overviews are necessary for
finding those points of interest, but users don’t need to see all available detail for all data
points at once—zooming in is sufficient for getting fine detail.

Some forms of Local Zooming, especially fisheye lenses, are appropriate only if your users
are willing to learn a new interaction technique to gain proficiency with a particular ap-
plication. Using Local Zooming can require patience.

Why

Ordinary zooming works well for most high-density information graphics, but it takes
away context: a fully zoomed view no longer shows an overview of the whole data set.
Local Zooming focuses on local detail while retaining context. The user remains in the
same conceptual space.

http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=98

The Patterns  317 

One possible cost of Local Zooming, however, is distortion of that conceptual space. Notice
how the introduction of a fisheye—a type of local zoom that maintains topological con-
tinuity between the zoomed area and the rest of the view—changes the landscape in
Figure 7-31. Suddenly the overview doesn’t look the same as it did before: landmarks have
moved, and spatial relationships have changed (“It used to be halfway down the right side
of the screen, but it’s not there anymore”).

Other kinds of Local Zooming don’t introduce distortion, but instead hide parts of the
overview. With a virtual magnifying glass, for instance, the user can see the zoomed area
and part of the larger context, but not what’s hidden by the magnifying glass “frame.”

The Overview Plus Detail pattern is a viable alternative to Local Zooming. It too offers both
detail (focus) and a full overview (context) in the same page, but it separates the two levels
of scale into two side-by-side views, rather than integrating them into one distorted view.
If Local Zooming is too difficult to implement or too hard for users to interact with, fall
back to Overview Plus Detail.

The Datatips pattern is another viable alternative. Again, you get both overview and detail,
but the information shown isn’t really a “zoom” as much as a description of the data at
that point. And a Datatip is an ephemeral item layered over the top of the graphic, whereas
Local Zooming can be an integral part of the graphic and can therefore be printed and
screen-captured.

How

Fill all the available space with the whole data set, drawn very small. Stretch it to fill the
window dynamically (see the Liquid Layout pattern in Chapter 4). Remove detail as neces-
sary. If text is an important element, use tiny fonts where you can; if the text still won’t fit,
use abstract visual representations such as solid rectangles or lines that approximate text.

Offer a local zoom mode. When the user turns it on and moves the pointer around, en-
large the small area directly under the pointer.

What the enlargement actually looks like depends on the kind of information graphic
you use—it doesn’t have to be literal, like a magnifying glass on a page. The DateLens,
in Figure 7-31, uses both horizontal and vertical enlargement and compression. But the
TableLens, in Figure 7-32, uses only a vertical enlargement and compression because the
data points of interest are whole rows, not a single cell in a row. A map or image, however,
needs to control both directions tightly in order to preserve its scale. In other words, don’t
stretch or squish a map. It’s harder to read that way.

Local zoom lenses can be finicky to drive, because the user might be aiming at very tiny
hit targets. They don’t look tiny—they’re magnified under the lens!—but the user actually
moves the pointer through the overview space, not the zoomed space. A small motion be-
comes a big jump. So when the data points are discrete, like table cells or network nodes,
you might consider jumping directly from one focal point to another.

318  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

It should be noted that fisheye views are an “advanced maneuver” in data visualization.
Fisheye views distort the area immediately around the zoom to achieve topological con-
tinuity with the rest of the graphic. (The DateLens is a fisheye, but the other examples
in this pattern are not.) This distortion can cause discomfort for the user who moves it
around a lot, for instance.

Examples

The DateLens, shown in Figure 7-31 at the top of the pattern, was a calendar application
that worked on both the desktop and a mobile device. (It was experimental, and support
for it ceased back around 2004.) It shows an overview of your calendar—each row is a
week—with blue blocks where your appointments are. For details, click on a cell. That cell
then expands, using an Animated Transition (Chapter 3), to show the day’s schedule. In this
design, the entire graphic compresses to allow room for the focused day, except for the
row and the column containing that cell. (That actually provides useful information about
the week’s schedule and about other weeks’ Thursday appointments.)

The Inxight TableLens permitted the user to open arbitrary numbers of rows and move
that “window” up and down the table. Figure 7-32 shows four magnified rows. Note that
the only enlargement here is in the vertical direction.

Figure 7-32. Inxight TableLens

The Mac OS dock does a simple version of Local Zooming (Figure 7-33), as does Google
Images (Figure 7-34).

The Patterns  319 

Figure 7-33. Mac OS dock

Figure 7-34. Google Images

Cartifact’s map lenses—literal ones, yet remarkably beautiful—allow the user to set both
the magnification level and the drawing style inside the lens (see Figure 7-35). These
remove much of the user’s need to keep zooming into the map for detail, then back out
again for context, then back in again for more detail. The alternate drawing styles (aerial,
Cartifact, historic, and 3D oblique) let the user see one area in several complementary
ways, without affecting the entire map.

320  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Figure 7-35. Cartifact map lenses (http://cartifact.com/webmaps/)

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,222,17,0,0,243

http://quince.infragistics.com/Patterns/Local%20Zooming.aspx

Sortable Table

Figure 7-36. iTunes sortable table header

What

Show the data in a table, and let the user sort the table rows according to the cell values
in a selected column.

Use when

The interface shows multivariate information that the user may want to explore, reorder,
customize, search through for a single item, or simply understand on the basis of those
different variables.

http://cartifact.com/webmaps/
http://cartifact.com/webmaps/
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=95
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=95
http://quince.infragistics.com/Patterns/Local Zooming.aspx
http://quince.infragistics.com/Patterns/Local Zooming.aspx

The Patterns  321 

Why

Giving the user the ability to change the sorting order of a table has powerful effects. First,
it facilitates exploration. A user can now learn things from the data that she may never
have been able to otherwise. How many of this kind? What proportion of this to that? Is
there only one of these? What’s first or last? Suddenly it becomes easier to find specific
items, too; a user need only remember one attribute of the item in question (e.g., its last-
edited date), sort on that attribute, and look up the value she remembers.

Furthermore, if the sort order is retained from one invocation of the software to another,
this is a way for the user to effectively customize the UI for her preferred usage patterns.
Some users want the table sorted first to last, some last to first, and some by a variable no
one else thinks is interesting. It’s good to give a user that kind of control.

Finally, the clickable-header concept is familiar to many users now, and they may expect
it even if you don’t provide it.

How

Choose the columns (i.e., the variables) carefully. What would a user want to sort by or
search for? Conversely, what doesn’t need to be shown in this table? What can be hidden
until the user asks for more detail about a specific item?

The table headers should have some visual affordance that can be clicked on. Many have
beveled, button-like borders, or blue underlined text. You should use up or down arrows
to show whether the sort is in ascending or descending order. (And the presence of an
arrow shows which column was last sorted on—a fortuitous side effect!) Consider using
rollover effects, such as highlighting or cursor changes, on the headers to reinforce the
impression of clickability.

Use a stable sort algorithm. This means that if a user sorts first by name and then by date,
the resultant list will show ordered groups of same-date items that are each sorted by
name within the group. In other words, the current sort order will be retained in the next
sort to the extent possible—subtle, but very useful.

If your UI technology permits, you might let users reorder columns by dragging and
dropping.

Examples

Inxight’s TableLens is a table whose rows compress down into tiny bars, the lengths of
which represent the values of the table cells. (Users can click on specific rows to see ordinary-
looking table rows, but that’s not what I want to talk about here.) One of the wonderful
things about this visualization is the ability to sort on any column—when the data is
highly correlated, as in this example, the user can see that correlation before her eyes.

322  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

The data set shown in Figure 7-37 comprises houses for sale in Santa Clara County,
California. In this screenshot, the user has clicked on the Bedroom column header, thus
sorting on that variable: the more bedrooms, the longer the blue bar. Previously, the stable-
sorted table had been sorted on Square Foot (representing the size of the house), so you
see a secondary “saw-tooth” pattern there; all houses with four bedrooms, for instance, are
sorted by size. The Baths variable almost mirrors the Square Foot attribute, and so does
Price, which indicates a rough correlation. And it makes intuitive sense—the more bed-
rooms a house has, the more bathrooms it’s likely to have, and the bigger it’s likely to be.

You can imagine other questions that can be answered by this kind of interactive graphic.
Does zip code correlate to price? How strong is the correlation between price and square
footage? Do certain realtors work only in certain cities? How many realtors are there?
And so on.

Figure 7-37. Inxight TableLens

In other libraries

http://ui-patterns.com/patterns/SortByColumn

http://www.welie.com/patterns/showPattern.php?patternID=table-sorter

http://quince.infragistics.com/Patterns/Sortable%20Table.aspx

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,233,17,0,0,254

http://ui-patterns.com/patterns/SortByColumn
http://ui-patterns.com/patterns/SortByColumn
http://www.welie.com/patterns/showPattern.php?patternID=table-sorter
http://www.welie.com/patterns/showPattern.php?patternID=table-sorter
http://quince.infragistics.com/Patterns/Sortable Table.aspx
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=106

The Patterns  323 

Radial Table

Figure 7-38. Analysis of car purchases (http://mkweb.bcgsc.ca/circos/intro/general_data/)

What

Show a table or list of items as a circle instead of a column. Draw connections among
items through the interior of the circle.

Use when

You have a long list or table of items and you need to show arbitrary relationships among
them: flows, connections, affinities, similarities, and even numerical values (encoded by
the thickness of the connection).

Why

A circular presentation enables free-form connection lines to be visualized far more eas-
ily than a line or column of elements would permit. Such connections have a shorter,
straighter distance to travel when drawn between points on an arc than points on a line,

http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=106
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=106
http://mkweb.bcgsc.ca/circos/intro/general_data/
http://mkweb.bcgsc.ca/circos/intro/general_data/
http://mkweb.bcgsc.ca/circos/intro/general_data/

324  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

and viewers can usually see patterns in the data more easily. (This is not always the case.
If you can, try out different types of connection visualizations to see if it’s true for your
particular data sets.)

Even when there are no connections to draw, some kinds of tabular data might be easier
to see when drawn as a circle—very long data sets with both large-scale and small-scale
features, for instance. Large-scale features might include groups and clusters, upper levels
of a hierarchy, or labels for large numbers of items. See the examples for illustrations.

From the website of Circos, a creator of radial table designs, comes this explanation:

Within the circle, the resolution varies linearly, increasing with radial position. This
makes the center of the circle ideal for compactly displaying summary statistics or
indicating points of interest (i.e. low resolution data) which the reader can then follow
outward to explore the data in greater detail (i.e. high resolution data).*

Finally, radial information graphics can be beautiful. When drawn skillfully, these kinds
of visualizations are fresh, attractive, and engaging.

How

Bend the linear table or list into a circle and put the text labels around the outside of the
circle (if you need them). Some Radial Tables place the x-axis on one half of the circle and
the y-axis on the other half; this is useful if your data table is trying to show connections
between two one-dimensional sets of items.

If the original table shows multiple columns of dependent data—numbers, bars, pictograms,
scatter plots, and so on—arrange those either inside or outside the circle, depending on the
visual scale and interrelatedness of these features. Large-scale, convergent features should
go inside; small-scale, detailed, divergent features should go outside, where they have
more space.

If the items in the table are categorized, you could encode those categories as groups
separated by gaps, or in different colors, or as arcs parallel to the circle (either inside or
outside the data axis).

Inside the circle, draw relationships among the items. Those relationships might take the
shape of free-form lines or arcs between table cells. The line color and thickness can en-
code additional variables about the relationships, such as source or destination (color),
and volume or strength (thickness). Sometimes these relationships need to be drawn so
thickly that they’re hard to distinguish from each other. Here are some ways to deal with
that problem:

*	 http://mkweb.bcgsc.ca/circos/intro/circular_approach/

The Patterns  325 

•	 Eliminate superfluous lines; draw only what you want viewers to focus on.

•	 Use drawing algorithms that can cluster lines together and keep them visually
organized.

•	 If the graphic is interactive, use techniques such as Data Spotlight and Dynamic Queries
to let the user see chosen subsets of the lines.

You may need to explain how to interpret a Radial Table. These graphics can be very useful
to the patient and informed viewer, but their meaning may not be immediately apparent
to a viewer who is naive or not motivated to spend time studying the graphic carefully. If
your users are likely to move on without understanding the Radial Table, consider simplify-
ing it or using an easier alternative rendering.

Examples

SolidSX Software Explorer is an application that draws Radial Tables of software packages.
Figure 7-39 shows dependencies, calls, and hierarchical relationships among code ele-
ments in a library. Note the containing arcs around the outside of the circle (showing the
static hierarchy), and the call-graph lines within the circle, which are carefully drawn for
clarity.

Figure 7-39. SolidSX Software Explorer (http://www.solidsourceit.com/products/SolidSX-source-code-
dependency-analysis.html)

http://www.solidsourceit.com/products/SolidSX-source-code-dependency-analysis.html
http://www.solidsourceit.com/products/SolidSX-source-code-dependency-analysis.html

326  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

From the Eigenfactor Project and Moritz Stefaner comes an elegant diagram of citation
patterns among branches of science, shown in Figure 7-40. There are many connections,
but they are drawn so well that the viewer can follow them with some degree of success.
The diagram shows which fields of science are more insular than others (e.g., economics)
and which are better connected.

Figure 7-40. Eigenfactor science citation patterns (http://well-formed.eigenfactor.org/radial.html)

The genetics diagram in Figure 7-41 demonstrates that the curved format can be effective
in illustrating data patterns other than connections. The diagram could have been “un-
rolled” into a horizontal strip-chart format, but this version is more compact and arguably
more readable than a long, thin linear chart. Note that the line charts on the inside of the
table are a larger-scale feature than the tiny multicolored slivers around the outside of the
circle, so they are appropriately shown inside the circle.

http://www.solidsourceit.com/products/SolidSX-source-code-dependency-analysis.html
http://well-formed.eigenfactor.org/radial.html
http://well-formed.eigenfactor.org/radial.html

The Patterns  327 

Figure 7-41. Genomic chart of a bacterium (http://www.plosone.org/article/info:doi/10.1371/journal.
pone.0011748)

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,217,17,0,0,238

For many more examples, visit the Circos and Visual Complexity websites:

http://mkweb.bcgsc.ca/circos/

http:/visualcomplexity.com/

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011748
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011748
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011748
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=90
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=90
http://mkweb.bcgsc.ca/circos/
http://mkweb.bcgsc.ca/circos/
http://www.visualcomplexity.com/

328  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Multi-Y Graph

Figure 7-42. New York Times graphic

What

Stack multiple graph lines in one panel; let them all share the same x-axis.

Use when

You present two or more graphs, usually simple line plots, bar charts, or area charts (or
any combination thereof). The data in those graphs all share the same x-axis, often a time-
line, but otherwise they describe different things, perhaps with different units or scale on
the y-axis. You want to encourage the viewer to find “vertical” relationships among the
data sets being shown—correlations, similarities, unexpected differences, and so on.

Why

Aligning the graphs along the x-axis first tells the viewer that these data sets are relat-
ed, and then it lets her make side-by-side comparisons of the data. In Figure 7-42, the
proximity of the two graphs makes visible the correlations in the curves’ shapes; you can
see that spikes in the bottom graph generally line up with interesting features in the top
graph, and the grid lines enable precise observation. For instance, the vertical grid line
between 1990 and 1991 lines up peaks in both curves.

You could have done this by superimposing one graph upon the other. But by showing
each graph individually, with its own y-axis, you enable each graph to be viewed on its
own merits without visual interference from the other.

http://www.visualcomplexity.com/

The Patterns  329 

Also, these data sets have very different Y values: one ranges from zero to nearly 150,
while the other ranges from −30 to +20! You couldn’t put them on the same y-axis anyhow
without the first one looking like a flat line. You’d need to draw another y-axis along the
left side, and then you’d need to choose a scaling that doesn’t make the graph look too
odd. Even so, direct superimposition encourages the viewer to think that the data sets use
the same Y scale, and to compare them on that basis—“apples to apples,” instead of “apples
to oranges.” If that’s not the case, superimposing them can be misleading.

How

Stack one graph on top of the other. Use one x-axis for both, but separate the y-axes into
different vertical spaces. If the y-axes need to overlap somewhat, they can, but try to keep
the graphs from visually interfering with each other.

Sometimes you don’t need y-axes at all; maybe it’s not important to let the user find exact
values (or maybe the graph itself contains exact values, such as labeled bar charts). In that
case, simply move the graph curves up and down until they don’t interfere with each other.

Label each graph so that its identity is unambiguous. Use vertical grid lines if possible;
they let viewers follow an X value from one data set to another, for easier comparison.
They also make it possible to discover an exact value for a data point of interest (or one
close to it) without making the user take out a straightedge and pencil.

Examples

Google Trends allows a user to compare the use frequency of different search terms. The
example in Figure 7-43 shows two sports-related terms that are comparable in volume, so
they’re easy to compare in one simple chart. But Google Trends goes beyond that. Relative
search volume is illustrated on the top chart, while the bottom chart shows news reference
volume. The metrics and their scales are different, so Trends uses two separate y-axes.

Figure 7-43. Google Trends

330  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

The example in Figure 7-44 shows an interactive multi-Y graph constructed in MATLAB.
You can manipulate the three data traces’ y-axes, color-coded on the left, with the mouse—
you can drag the traces up and down the graph, “stretch” them vertically by sliding the
colored axis end caps, and even change the displayed axis range by editing the y-axis lim-
its in place. Here’s why that’s interesting: you might notice that the traces look similar, as
though they were correlated somehow—all three drop in value just after the vertical line
labeled 1180, for instance. But just how similar are they? Move them and see.

Figure 7-44. MATLAB plot

Your eyes are very, very good at discerning relationships among data graphics. By stacking
and superimposing the differently scaled plot traces shown in Figure 7-45, a user might
gain valuable insight into whatever phenomenon produced this data.

Figure 7-45. MATLAB plot, again

The Patterns  331 

The information graphics in a multi-Y display don’t need to be traditional graphs. The
weather chart shown in Figure 7-46 uses a series of pictograms to illustrate expected
weather conditions; these are aligned with the same time-based x-axis that the graph uses.
(This chart hints at the next pattern, Small Multiples.)

Figure 7-46. Weather chart from The Weather Channel

In other libraries

http://quince.infragistics.com/Patterns/Multi-Y%20Graph.aspx

Small Multiples

Figure 7-47. Climate heat map, from a University of Oregon publication

http://quince.infragistics.com/Patterns/Multi-Y Graph.aspx
http://quince.infragistics.com/Patterns/Multi-Y Graph.aspx

332  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

What

Create many small pictures of the data using two or three data dimensions. Tile them on
the page according to one or two additional data dimensions, either in a single comic-
strip sequence or in a 2D matrix.

Use when

You need to display a large data set with more than two dimensions or independent
variables. It’s easy to show a single “slice” of the data as a picture—as a plot, table, map,
or image, for instance—but you find it hard to show more dimensions than that. Users
might be forced to look at one plot at a time, flipping back and forth among them to see
differences.

When using Small Multiples, you need to have a fairly large display area available. Mobile
devices rarely do this well, unless each individual picture is very tiny. Use this pattern
when most users will be seeing these on a large screen or on printed paper.

That being said, sparklines are a particular type of Small Multiples that can be very effective
at tiny scales, such as in running text or in a column of table cells. They are essentially
miniature graphs, stripped of all labels and axes, created to show the shape or envelope of
a simple data set.

Why

Small Multiples are data-rich—they show a lot of information at one time, but in a compre-
hensible way. Every individual picture tells a story. But when you put them all together,
and demonstrate how each picture varies from one to the next, an even bigger story is told.

As Edward Tufte put it in his classic book, Envisioning Information (Graphics Press), “Small
multiple designs, multivariate and data bountiful, answer directly by visually enforcing
comparisons of changes, of the differences among objects, of the scope of alternatives.”

(Tufte named and popularized Small Multiples in his famous books about visualization.)

Think about it this way. If you can encode some dimensions in each individual picture,
but you need to encode an extra dimension that just won’t fit in the pictures, how could
you do it?

Sequential presentation
Express that dimension varying across time. You can play them like a movie, use
Back/Next buttons to page one at a time, and so on.

3D presentation
Place the pictures along a third spatial axis, the z-axis.

Small multiples
Reuse the x- and y-axes at a larger scale.

The Patterns  333 

Side-by-side placement of pictures lets a user glance from one to the other freely and
rapidly. She doesn’t have to remember what was shown in a previous screen, as would be
required by a sequential presentation (although a movie can be very effective at showing
tiny differences between frames). She also doesn’t have to decode or rotate a complicated
3D plot, as would be required if you place 2D pictures along a third axis. Sequential and
3D presentations sometimes work very well, but not always, and they often don’t work in
a noninteractive setting at all.

How

Choose whether to represent one extra data dimension or two. With only one, you can lay
out the images vertically, horizontally, or even line-wrapped, like a comic strip—from the
starting point, the user can read through to the end. With two data dimensions, you should
use a 2D table or matrix—express one data dimension as columns, and the other as rows.

Whether you use one dimension or two, label the Small Multiples with clear captions—
individually if necessary, or otherwise along the sides of the display. Make sure the users
understand which data dimension is varying across the multiples, and whether you’re
encoding one or two data dimensions.

Each image should be similar to the others: the same size and/or shape, the same axis
scaling (if you’re using plots), and the same kind of content. When you use Small Multiples,
you’re trying to bring out the meaningful differences between the things being shown. Try
to eliminate the visual differences that don’t mean anything.

Of course, you shouldn’t use too many Small Multiples on one page. If one of the data di-
mensions has a range of 1 to 100, you probably don’t want 100 rows or columns of small
multiples, so what do you do? You could bin those 100 values into, say, five bins contain-
ing 20 values each. Or you could use a technique called shingling, which is similar to bin-
ning but allows substantial overlap between the bins. (That means some data points will
appear more than once, but that may be a good thing for users trying to discern patterns
in the data; just make sure it’s labeled well so that they know what’s going on.)

Some small-multiple plots with two extra encoded dimensions are called trellis plots or
trellis graphs. William Cleveland, a noted authority on statistical graphing, uses this term,
and so do the software packages S-PLUS and R.

Examples

The North American climate graph, at the top of the pattern in Figure 7-47, shows many en-
coded variables. Underlying each small-multiple picture is a 2D geographic map, of course,
and overlaid on that is a color-coded “graph” of some climate metric, such as temperature.
With any one picture, you can see interesting shapes in the color data; they might prompt a
viewer to ask questions about why blobs of color appear over certain parts of the continent.

334  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

The Small Multiples display as a whole encodes two additional variables: each column is
a month of the year, and each row represents a climate metric. Your eyes have probably
followed the changes across the rows, noting changes through the year, and comparisons
up and down the columns are easy, too.

The example shown in Figure 7-48 uses the grid to encode two independent variables—
ethnicity/religion and income—into the state-by-state geographic data. The dependent
variable, encoded by color, is the estimated level of public support for school vouchers
(orange representing support, green opposition). The resultant graphic is very rich and
nuanced, telling countless stories about Americans’ attitudes toward the topic.

Figure 7-48. Geographic and demographic small-multiples chart (http://www.stat.columbia.edu/~cook/
movabletype/archives/2009/07/hard_sell_for_b.html)

http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html

The Patterns  335 

A more abstract two-dimensional trellis plot, also called a coplot in William Cleveland’s
Visualizing Data, is shown in Figure 7-49. Created with the R software package, this ex-
ample shows a quantity measured along four dimensions: latitude, longitude, depth, and
magnitude. The values along the depth and magnitude dimensions overlap—this is the
shingling technique mentioned earlier.

Figure 7-49. Trellis plot of earthquake data (http://www.sph.umich.edu/~nichols/biostat_bbag-
march2001.pdf)

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,298,17,0,0,319

http://quince.infragistics.com/Patterns/Small%20Multiples.aspx

See also the works by Edward Tufte and William Cleveland listed earlier.

http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2009/07/hard_sell_for_b.html
http://www.sph.umich.edu/~nichols/biostat_bbag-march2001.pdf
http://www.sph.umich.edu/~nichols/biostat_bbag-march2001.pdf
http://www.sph.umich.edu/~nichols/biostat_bbag-march2001.pdf
http://quince.infragistics.com/Patterns/Small Multiples.aspx
http://quince.infragistics.com/Patterns/Small Multiples.aspx

336  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Treemap

Figure 7-50. SmartMoney Map of the Market (http://www.smartmoney.com/map-of-the-market/)

What

Express multidimensional and/or hierarchical data as rectangles of various sizes. You can
nest those rectangles to show the hierarchy, and color or label them to show additional
variables.

Use when

Your data is tree-shaped (hierarchical). Alternatively, it may be multivariate—each item has
several attributes, such as size and category, which permit items to be grouped according to
those attributes. Users want to see an overview of many data points—maybe hundreds or
thousands—and they’re using screens large enough to accommodate a large display.

Your users should be patient and motivated enough to learn to use an unusual interface.
Treemaps are not always easy to read, especially for people who haven’t seen them be-
fore. Furthermore, they work better on-screen than they do on paper, because Datatips,
Dynamic Queries, and other interactive mechanisms can help users understand the data.

http://www.smartmoney.com/map-of-the-market/
http://www.smartmoney.com/map-of-the-market/
http://www.smartmoney.com/map-of-the-market/

The Patterns  337 

Why

Treemaps encode many data attributes into a single dense diagram. By taking advantage
of position, size, containment, color hue and/or value, and labeling, a treemap packs a lot
of information into a space that encourages the human visual system to seek out trends,
relationships among variables, and specific points of interest.

Look at the SmartMoney treemap in Figure 7-50, which shows the past 52 weeks’ perfor-
mance of more than 500 publicly traded stocks. Section size illustrates the relative sizes of
different market sectors and of companies within those sectors—the blocks of solid color
are individual companies. You can instantly see that in the past year, the big gainers in
bright green were from the Technology and Consumer Cyclicals categories, and the losers
in red have been in the Financial and Energy categories.

This treemap makes it very easy to get an instant overview and to spot outliers. It encour-
ages you to see relationships between size and color, size and position, and position and
color—all of which give you different kinds of insight into the market. It would take you
forever to get that insight from a long table of stock prices.

How

The critical step in designing a treemap is deciding which data attributes are encoded by
which visual variables:

Rectangle size
Usually this encodes a numeric value, such as size, price, or percentage. Make each
rectangle’s area proportional to that number. If the number has too great a range,
you’ll end up with some enormous rectangles and some microscopic rectangles, in
which case you could either let the user zoom in on them for a closer look, or fil-
ter out the large ones to let the small ones scale up. Dynamic Queries (earlier in this
chapter) are often used for that. Refer back to Figure 7-24 for an example of Dynamic
Queries used in conjunction with a treemap.

Grouping and nesting
If your data is already inherently hierarchical, like a taxonomic tree or a filesystem,
you should group and nest the rectangles accordingly. If not, see whether the data
items have a natural grouping or categorization that is meaningful to the user. Do
they have several possible categorizations? You might consider giving the user a
choice on how to group them. Do they have no obvious categorization at all? Then
you could take a numeric attribute, such as price, and bin it into categories ($0 to $5,
$5 to $10, etc.). Or you could not group the data items at all. But consider whether
some other type of information graphic may be more appropriate; grouping is one of
the treemap’s strengths.

338  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

Color
You can use color to represent a numeric or otherwise ordered value, as in the
SmartMoney example in Figure 7-50, or another categorization. For a numeric value,
choose two colors for the “endpoints” of the range of possible values, such as red
and green, white and blue, yellow and red, and so on; shades of color between those
endpoints represent values in between. For a categorization, use a different hue to
represent each category. (If the shades are too similar, though, viewers may assume
an ordering where there isn’t one.)

Position
A rectangle’s position within the treemap is partially dictated by where it belongs in
the hierarchy or categorization. But within a category, you might still have freedom
to decide where a given rectangle goes. Some treemaps place the largest rectangles
in the upper left of a category, and then space-fill the rest of the category so that the
smallest rectangles are in the lower right. This establishes a nice rhythm on the page,
and it helps the user to visually compare the number of small or large rectangles in
each main category. In this case, position doesn’t encode yet another variable; in-
stead, it’s redundant with size and grouping. But other treemap implementations do
encode an order—by age, or alphabetical by name, for example. It depends on how
many variables you want to encode at once.

Most treemaps allow users to drill down to the actual data items. Mouse rollovers, for in-
stance, usually produce largish tool tips that describe the item in full (see the Datatips pat-
tern in this chapter). You’ll usually have to elide some text anyway to fit the descriptions
into the treemap blocks, so this is a good thing to do. Furthermore, a single or double click
often brings the user to some other page or window about that item.

As for implementation, it is not trivial to write code to lay out a treemap in a pleasing way.
Fortunately, many algorithms exist for drawing a treemap. Some are in academic papers;
some are in open source software or freeware; and others are in products. The different
algorithms vary according to how they choose the rectangles’ aspect ratios (i.e., the pro-
portion between width and height; the squarer, the better), how they fill the space for a
given category, and their stability with respect to data changes.

You may need to explain how to interpret a Treemap. These graphics can be very useful to
the patient and informed viewer, but their meaning isn’t immediately apparent to a viewer
who is naive or not motivated to spend time studying the graphic carefully. If your users
are likely to move on without understanding the Treemap, consider simplifying it or using
an easier alternative rendering.

The Patterns  339 

Examples

The now-defunct Newsmap illustrated the “news landscape” as described by Google
News (see Figure 7-51). At any given moment, the Newsmap could collect Google’s top
headlines and draw a treemap in which the largest blocks represented the most reported-
on stories. The encodings here are:

•	 Block size: “popularity” of news item; how many news outlets reported this story

•	 Color hue: topic

•	 Top-level grouping: also topic

•	 Color value (darkness/lightness): age

Because the headline’s text size is proportional to block size, which in turn is proportional
to popularity, your eyes are immediately drawn to the biggest news items. (What did you
read first? Perhaps the “False warnings” headline, then “Please Work for Free!”?) The
treemap is thus an automatically constructed visual hierarchy.

Figure 7-51. Newsmap

340  Chapter 7:  Showing Complex Data: Trees, Charts, and Other Information Graphics

From the Hive Group comes a small collection of similar treemap visualizations: items
available for purchase from Amazon, world population data, and so on. Figure 7-52 shows
a list of articles recently promoted via Digg.

Some encodings—block size, color hue, grouping—are settable by the user via the bar on
the top (“Group by,” “Size represents,” “Color represents”). That kind of customizability is
really handy in this type of application. After all, there are many data attributes associated
with each article—too many to be encoded by the available three or four visual variables.
The treemap designers didn’t know which attributes each user would be most interested
in. They made a good default guess, and put in a simple, learnable UI to allow users to do
their own thing.

Figure 7-52. Hive Group visualization of Digg articles (http://www.hivegroup.com/gallery/)

In other libraries

http://patternbrowser.org/code/pattern/pattern_anzeigen.php?4,215,17,0,0,236

http://quince.infragistics.com/Patterns/Treemap.aspx

Ben Shneiderman invented the treemap in 1990, and he and his colleagues at the
University of Maryland have been refining the technique for some time now. A history of
the treemap, along with many links to papers and implementations, can be found at http://
www.cs.umd.edu/hcil/treemap-history/.

http://www.hivegroup.com/gallery/
http://www.hivegroup.com/gallery/
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=88
http://interface.fh-potsdam.de/infodesignpatterns/patterndetail.php?pattern=88
http://quince.infragistics.com/Patterns/Treemap.aspx
http://quince.infragistics.com/Patterns/Treemap.aspx
http://www.cs.umd.edu/hcil/treemap-history/

Chapter 8

Getting Input from Users:
Forms and Controls

Sooner or later, the software you design will probably ask the user to answer some kind of
question. It might even happen in the first few minutes of interaction. Where should this
software be installed? What’s your login name? What words do you want to search for?

These kinds of interactions are among the easiest to design. Everyone knows how to use
text fields, checkboxes, and combo boxes. These input controls are often the first interface
elements that novice designers use as they build their first GUIs and websites.

Still, it doesn’t take much to set up a potentially awkward interaction. Here’s another sam-
ple question: for what location do you want a weather report? The user might wonder, do
I specify a location by city, country, postal code, or what? Are abbreviations OK? What if I
misspell it? What if I ask for a city it doesn’t know about? Isn’t there a map to choose from?
And why can’t it remember the location I gave it yesterday, anyhow?

This chapter discusses ways to smooth out these problems. The patterns, techniques, and
controls described here apply mostly to form design—a form being simply a series of
question/answer pairs. However, they will also be useful in other contexts, such as for
single controls on web pages or on application toolbars. Input design and form design
are core skills for interaction designers, as you can use them in every genre and on every
platform.

The Basics of Form Design
First, a few principles to remember when doing input and form design:

Make sure the user understands what’s asked for, and why
This is entirely context-dependent, and any generalizations here risk sounding
vapid, but let’s try anyway. You should write labels with words that your target users
understand—plain language for novice or occasional users, and carefully chosen jar-
gon or specialized vocabulary for domain experts. If you design a long or tedious
form, explain why you need all the information you’re asking for, break it up into
descriptive Titled Sections, and give some reassurance that sensitive information will

342  Chapter 8:  Getting Input from Users: Forms and Controls

be handled with care. If you’re putting a button on a toolbar (or somewhere else that’s
too crowded for a label) and the button’s function isn’t immediately obvious, use a
descriptive tool tip or other type of context-sensitive help to tell the user what it does.

If you can, avoid asking the question at all
Asking the user to answer a question, especially if it comes in the middle of some
other task, is a bit of an imposition. You might be asking him to break his train of
thought and deal with something he hadn’t expected to think about. Even in the best
of cases, typing into text fields isn’t most people’s idea of a fun time. Can you “prefill”
an input control with already-known or guessable information, as the Autocompletion
pattern recommends? Can you offer Good Defaults that remove the burdens of choice
from most of your users? Can you avoid asking for the information altogether?

There’s one glaring exception to this principle: security. Sometimes we use input con-
trols in a challenge/response context, such as asking for passwords or credit card
numbers. You obviously don’t want to circumvent these security mechanisms by ca-
sually prefilling sensitive information.

Knowledge “in the world” is often more accurate than knowledge “in the head”
You can’t expect human beings to recall lists of things perfectly. If you ask users to
make a choice from a prescribed set of items, try to make that list available to them
so that they can read over it. Drop downs, combo boxes, lists, and other such controls
put all the choices out there for the user to review.

(Obviously, a user can remember his name, birthday, address, state or country, phone
number, and other common personal information—and he can type such informa-
tion very easily and accurately. There’s no need for “knowledge in the world” in these
cases; text fields work just fine, and are easier to use than drop downs.)

Similarly, if you ask for input that needs to be formatted in a specific way, you might
want to offer the user clues about how to format it. Even if the user has used your UI
before, he may not remember what’s required—a gentle reminder may be welcome.
Good Defaults, Structured Format, and Input Hints all serve this purpose. Autocompletion
goes a step further by telling the user what input is valid, or by reminding the user
what he entered some previous time.

Respond sensitively to errors, and be forgiving when possible
Accept multiple formats for dates, addresses, phone numbers, credit card numbers,
and so on, per the Forgiving Format pattern. If a user does enter information that the
form rejects, show an error message as soon as it becomes clear that the user made a
mistake (you may need to wait until more form fields are filled out before deciding
that for sure). On the form, politely indicate which input field is problematic, why,
and how the user might fix it. See the patterns called Password Strength Meter and
Same-Page Error Messages.

The Basics of Form Design  343 

Beware a literal translation from the underlying programming model
Many forms are built to edit database records, or to edit objects in an object-oriented
programming language. Given a data structure like these to fill out, it’s really easy to
design a form to do it. Each structure element gets (1) a label, and (2) a control (or a
bundle of controls acting together). Put them in some rational order, lay them out top
to bottom, and you’re done, right?

Not entirely. This kind of implementation-driven form design does work, but it can
give you a utilitarian and dull interface—or a difficult one. What if the structure
elements don’t match up with the input the user expects to give, for instance? And
what if the structure is, say, 30 elements long? For some contexts, such as property
sheets in a programming environment, it’s appropriate to show everything the way
it’s implemented—that’s part of the point. But for everything else, a more elegant and
user-centered presentation is better.

So, here’s the challenge: can you exploit dependencies among the structure elements,
familiar graphic constructs (such as address labels), unstated assumptions, or knowl-
edge of the user gained from previous interactions to make the form less onerous?
Can you turn the problem into one handled by direct manipulation, such as dragging
and dropping things around? Be creative!

Usability-test it
For some reason, when input forms are involved, it’s particularly easy for design-
ers and users to make radically different assumptions about terminology, possible
answers, intrusiveness, and other context-of-use issues. This book has said it before,
and will say it again: do some usability testing, even if you’re reasonably sure your
design is good. This will give you empirical evidence of what works and what doesn’t
for your particular situation.

Your choice of controls will affect the user’s expectation of what is asked for, so choose wisely
A radio box suggests a one-of-many choice, while a one-line text field suggests a
short, open-ended answer. Consciously or not, people will use the physical form of
a control—its type, its size, and so forth—to figure out what’s being asked for, and
they’ll set their expectations accordingly. If you use a text field to ask for a number,
users may believe that any number is OK; if they enter “12” and you then surprise
them with an error dialog box saying “The number you enter must be between 1 and
10,” you’ve yanked the rug out from under them. A slider or spin box would have
been better.

The following section gives you a table of possible controls for different input types.
You or the engineers you work with will need to decide the semantics of each ques-
tion. Is it binary? A date or time? One-of-many? Many-of-many? Open-ended but
requiring validation? Look it up here, and then choose a control based on your par-
ticular design constraints.

344  Chapter 8:  Getting Input from Users: Forms and Controls

Control Choice
The next sections describe controls and patterns for the kinds of information you might
require from the user, such as numbers or choices from lists. It’s not a complete set by any
means; in fact, you can probably come up with plenty of others. But the types shown here
are common, and the listed controls are among your best choices for clarity and usability.

Consider these factors when choosing among the possible controls for a given informa-
tion type:

Available space
Some controls take up lots of screen real estate; others are smaller, but may be harder
to use than larger ones. Short forms on web pages might be able to spend that screen
space on radio buttons or illustrated lists, whereas complex applications may need to
pack as much content as possible into small spaces. Toolbars and table-style property
sheets are especially constraining, since they generally allow for only one text line of
height and often not much width, either.

User sophistication with respect to general computer usage
Text fields should be familiar to almost all users of anything you’d design, but not ev-
eryone would be comfortable using a double-thumbed slider. For that matter, many
occasional computer users don’t know how to handle a multiple-selection listbox,
either.

User sophistication with respect to domain knowledge
A text field might be fine if your users know that, say, only the numbers 1–10 and
20–30 are valid. Beginners will stumble, but if they’re a very small part of your user
base (and if the context is readily learned), maybe that’s OK—a tiny text field might
be better than using a big set of interlinked controls.

Expectations from other applications
For instance, Bold/Italic/Underline controls are known as iconic buttons; it would
just be weird to see them as radio buttons instead.

Available technology
As of this writing, HTML provides only a very small subset of the controls in com-
mon usage on the desktop: text fields, radio boxes and checkboxes, scrolled lists, and
simple drop downs. Commercial and open source GUI toolkits provide richer sets
of controls. Their offerings vary, but many of them are extensible via programming,
allowing you to create custom controls for specific situations.

Control Choice  345 

The following sections summarize the various control options for four common input
scenarios: lists of items, text, numbers, and dates or times. Each choice is illustrated with
a typical example, taken from the Windows 2000 look-and-feel. (Keep in mind that these
examples are not necessarily the best possible rendering of these controls! You do have
some freedom when you decide how to draw them, especially on the Web. See Chapter 9’s
introduction for further discussion.)

Lists of Items
A wide variety of familiar controls allow users to select items or options from lists. Your
choice of control depends on the number of items or options to be selected (one or many)
and the number of potentially selectable items (two, a handful, or many).

Here are controls for selecting one of two options (a binary choice).

Checkbox
• Pros: simple; low space consumption
• Cons: can only express one choice, so its in-

verse remains implied and unstated; this can
lead to confusion about what it means when
it’s off

Two radio buttons
• Pros: both choices are stated and visible
• Cons: higher space consumption

Two-choice drop-down list
• Pros: both choices are stated; low and predict-

able space consumption; easily expandable
later to more than two choices

• Cons: only one choice is visible at a time; requires
some dexterity

“Press-and-stick” toggle button
• Pros: same as for checkbox; when iconic, very

low space consumption
• Cons: same as for checkbox; also, not as stan-

dard as a checkbox for text choices

346  Chapter 8:  Getting Input from Users: Forms and Controls

The following controls are for selecting one of N items, where N is small.

N radio buttons
• Pros: all choices are always visible
• Cons: high space consumption

N-item drop-down list
• Pros: low space consumption
• Cons: only one choice is visible at a time, except

when the menu is open; requires some dexterity

N-item set of mutually exclusive iconic
toggle buttons

• Pros: low space consumption; all choices are
visible

• Cons: icons might be cryptic, requiring tool
tips for understanding; user might not know
they’re mutually exclusive

Single-selection list or table
• Pros: many choices are visible; can be kept as

small as three items
• Cons: higher space consumption than drop-

down list or spinner

Spinner
• Pros: low space consumption
• Cons: only one choice is ever visible at a time;

requires a lot of dexterity; unfamiliar to naive
computer users; drop-down list is usually a bet-
ter choice

Control Choice  347 

These controls are for selecting one of N items, where N is large.

N-item drop-down list, scrolled if
necessary

• Pros: low space consumption
• Cons: only one choice is visible at a time,

except when menu is open; requires a
lot of dexterity to scroll through items
on the drop-down menu

Single-selection list or table
• Pros: many choices are visible; can be

kept small if needed
• Cons: higher space consumption than

drop-down list

Single-selection tree or Cascading List,
with items arranged into categories

• Pros: many choices are visible; organiza-
tion helps findability in some cases

• Cons: may be unfamiliar to naive com-
puter users; high space consumption;
requires high dexterity

Custom browser, such as for files,
colors, or fonts

• Pros: suited for browsing available
choices

• Cons: may be unfamiliar to some users;
difficult to design; usually a separate
window, so it’s less immediate than
controls placed directly on the page

348  Chapter 8:  Getting Input from Users: Forms and Controls

Here are controls for selecting many of N items, in any order.

Array of N checkboxes
• Pros: all choices are stated and visible
• Cons: high space consumption

Array of N toggle buttons
• Pros: low space consumption; all choices

are visible
• Cons: icons might be cryptic, requiring

tool tips for understanding; might look
mutually exclusive

Multiple-selection list or table
• Pros: many choices are visible; can be

kept small if needed
• Cons: not all choices are visible without

scrolling; high (but bounded) space
consumption; user might not realize it’s
multiple-selection

List with checkbox items
• Pros: many choices are visible; can be kept

small if needed; affordance for selection is
obvious

• Cons: not all choices are visible without
scrolling; high (but bounded) space
consumption

Multiple-selection tree or Cascading
List, with items arranged into
categories

• Pros: many choices are visible; organiza-
tion helps findability in some cases

• Cons: may be unfamiliar to naive com-
puter users; requires high dexterity;
looks the same as single-selection tree

Control Choice  349 

Custom browser, such as for files,
colors, or fonts

• Pros: suited for browsing available choices
• Cons: may be unfamiliar to some users;

difficult to design; usually a separate
window, so it’s less immediate than con-
trols placed directly on the page

List Builder pattern
• Pros: selected set is easy to view; selec-

tion can be an ordered list if desired;
easily handles a large source list

• Cons: very high space consumption due
to two lists; does not easily handle a
large set of selected objects

Use these controls for constructing an unordered list of user-entered items.

List or table with Add or New button
• Pros: “add” action is visible and obvious
• Cons: higher space consumption; visual clutter

List or table with New-Item Row pattern
• Pros: lower space consumption; editing is done

in place
• Cons: “add” action is not quite as obvious as a

button

350  Chapter 8:  Getting Input from Users: Forms and Controls

List or table that can receive dragged-and-
dropped items

• Pros: visually elegant and space-saving; drag-
and-drop is efficient and intuitive

• Cons: “add” action is not visible, so users may not
know the list is a drop target

These controls are useful for constructing an ordered list of items.

Unordered list with “up” and “down”
affordances

• Pros: rearrangement actions are visible
• Cons: higher space consumption

Unordered list that offers internal drag-
and-drop for reordering items

• Pros: visually elegant and space-saving; drag-
and-drop is efficient and intuitive

• Cons: rearrangement actions are not visible, so
users may not know they’re available

Text
Collecting text input from a user is one of the most basic form tasks. The controls typi-
cally are chosen according to the number of lines to be entered, whether or not the lines
are predetermined choices, and whether or not the text will include formatting.

The following control is for entering one line of text.

Single-line text field

Control Choice  351 

These controls are useful for entering either one line of text or a one-of-N choice.

Combo box
• Pros: quicker to use than a separate dialog

box; familiar
• Cons: limited number of items can reason-

ably fit in drop down

Text field with More button or
Dropdown Chooser

• Pros: permits the launch of a specialized
chooser dialog box, e.g., a file finder or
drop down

• Cons: not as familiar as a combo box to
some users; dialogs are not as immediate

This control is for entering multiple lines of unformatted text.

Multiline text area

These controls are for entering multiple lines of formatted text.

Text area with inline tags
• Pros: skilled users can avoid the

toolbar by typing tags directly
• Cons: not truly WYSIWYG

352  Chapter 8:  Getting Input from Users: Forms and Controls

Rich-text editor
• Pros: immediacy, since the edited

text serves as a preview
• Cons: use of toolbar is required,

so it cannot always be keyboard-
only

Numbers
Because numbers often must follow more complex formatting rules, entering numbers
on a form is slightly more complex than entering basic text. The choice of input options
depends on the type of number you enter and its allowable range.

The following are controls for entering numbers of any type or format.

Text field using Forgiving Format
• Pros: visually elegant; permits wide variety of formats or

data types
• Cons: expected format is not evident from the control’s

form, so it may cause temporary confusion; requires care-
ful backend validation

Text field using Structured Format
• Pros: desired format evident from control’s form
• Cons: possibly higher space consumption; more visual

complexity; does not permit any deviation from the
specified format, even if user needs to do so; may be
more difficult for assistive technologies than a single field

Spin box (best for integers or discrete steps)
• Pros: user can arrive at a value via mouse clicks, without

touching the keyboard; can also type directly if desired
• Cons: not familiar to all users; you may need to hold

down the button long enough to reach the desired
value; requires dexterity to use tiny buttons

Control Choice  353 

Use these controls for entering numbers from a bounded range.

Slider
• Pros: obvious metaphor; position of value in

range is shown visually; the user cannot enter a
number outside the range

• Cons: high space consumption; unobvious
keyboard access; tick labels can make it very
crowded

Spinner
• Pros: values are constrained to be in range

when buttons are used; low space consump-
tion; supports both keyboard-only and mouse-
only access

• Cons: not familiar to all users; requires dexterity
to use tiny buttons; needs validation; cannot
visually see value within range

Text field with after-the-fact error checking
(can have Input Hints, Input Prompt, etc.)

• Pros: familiar to everyone; low space consump-
tion; keyboard access

• Cons: requires validation; no constraints on
what can be entered, so you have to commu-
nicate the range by some other means

Slider with text field (can take the form
of a Dropdown Chooser with a slider on the
drop down)

• Pros: allows both visual and numeric forms of
input

• Cons: complex; high space consumption when
both elements are on the page; requires valida-
tion of text field when the user types the value

354  Chapter 8:  Getting Input from Users: Forms and Controls

These controls are for entering a subrange from a larger range.

Double slider (can be used with two text fields)
• Pros: lower space consumption than two sliders
• Cons: unfamiliar to most users; no keyboard access

unless you also use text fields

Two sliders (also can be used with text fields)
• Pros: less intimidating than a double slider
• Cons: very high space consumption; no keyboard

access unless text fields are used, too

Two spinners (can be linked via Fill-in-the-
Blanks)

• Pros: values are constrained to be in range when
buttons are used; low space consumption; supports
both keyboard-only and mouse-only access

• Cons: not familiar to all users; requires dexterity to
use tiny buttons; needs validation; cannot visually see
value within range

Two text fields with error checking (can use
Input Hints, Input Prompt, or Fill-in-the-Blanks)

• Pros: familiar to everyone; much lower space con-
sumption than sliders

• Cons: requires validation; no constraints on what can
be entered, so you need to communicate the range
by some other means

Control Choice  355 

Dates or Times
Because of the potential formats and internationalization issues, dates and times can be
a tricky item to accept from users. Input options for dates or times include the following.

Forgiving Format text field
• Pros: visually simple; permits wide variety of

formats or data types; keyboard access
• Cons: expected format not evident from con-

trol’s form, so it may cause brief confusion;
requires careful backend validation

Structured Format text field
• Pros: desired format evident from control’s form
• Cons: possibly higher space consumption;

more visual clutter; does not permit deviation
from specified format, even if user wants to
do so; may be more difficult for screen readers
than a single field

Calendar or clock control
• Pros: obvious metaphor; input is constrained to

allowable values
• Cons: high space consumption; may not provide

keyboard-only access

Dropdown Chooser with calendar or clock
control

• Pros: combines the advantages of text field and
calendar control; low space consumption

• Cons: complex interaction; requires dexterity to
pick values from a drop down

356  Chapter 8:  Getting Input from Users: Forms and Controls

The Patterns
As you might have guessed if you read through the control tables in the preceding section,
most of these patterns describe controls—specifically, how you can combine controls
with other controls and text in ways that make them easier to use. Some patterns define
structural relationships between elements, such as Dropdown Chooser and Fill-in-the-Blanks.
Others, such as Good Defaults and Autocompletion, discuss the values of controls and how
those values change.

A large number of these patterns deal primarily with text fields: Forgiving Format,
Structured Format, Fill-in-the-Blanks, Input Hints, Input Prompt, Password Strength Meter, and
Autocompletion. That shouldn’t be surprising. Text fields are as common as dirt, but they
don’t make it easy for users to figure out what should go in them. They’re easiest to use
when presented in a context that makes their usage clear. The patterns give you many
ways to create that context.

1.	 Forgiving Format

2.	 Structured Format

3.	 Fill-in-the-Blanks

4.	 Input Hints

5.	 Input Prompt

6.	 Password Strength Meter

7.	 Autocompletion

The next two patterns deal with controls other than text fields. Dropdown Chooser de-
scribes a way to create a custom control, and List Builder, referenced in the control table
shown earlier, describes a commonly reinvented combination of controls that lets users
construct a list of items.

8.	 Dropdown Chooser

9.	 List Builder

You should design the remaining patterns into the whole form. They apply equally well to
text fields, drop downs, radio buttons, lists, and other stateful controls, but you should use
them consistently within a form (or within a dialog box, or even an entire application).

10.	 Good Defaults

11.	 Same-Page Error Messages

Patterns from other chapters apply to form design as well. From Chapter 4, Right/Left
Alignment discusses one way to arrange labels alongside controls. Labels can also be placed
above the form fields (at the cost of vertical space, but with plenty of horizontal room for
long labels), or left-aligned along the left edge of the form. The choice can affect the speed
of form completion.

The Patterns  357 

Chapters 3 and 4 also give you some larger-scale design possibilities. A gatekeeper form—
any form that stands between the user and his immediate goal, such as sign-up or purchase
forms—should be in Center Stage, with very few distractions on the page. Alternatively,
you might make it a Modal Panel, layered over the page.

If you have a long form that covers different topics, you might consider breaking it up into
Titled Sections or even separate pages. (Tabs tend to work poorly as grouping mechanisms
for forms.) If you break up a form into a sequence of pages, use the Wizard and Sequence
Map patterns to show users where they are and where they’re going.

Finally, forms should use a Prominent “Done” Button (Chapter 6) for the completion or sub-
mission action. If you have secondary actions, such as a form reset or a help link, make
those less prominent.

Forgiving Format

Figure 8-1. Weather.com

What

Permit users to enter text in a variety of formats and syntax, and make the application
interpret it intelligently.

Use when

Your UI asks for data that users might type with an unpredictable mix of whitespace, hy-
phens, abbreviations, or capitalizations. More generally, the UI can accept input of various
kinds from the user—different meanings, formats, or syntax. But you want to keep the
interface visually simple.

Why

The user just wants to get something done, not think about “correct” formats and complex
UIs. Computers are good at figuring out how to handle input of different types (up to a
point, anyway). It’s a perfect match: let the user type whatever he needs, and if it’s reason-
able, make the software do the right thing with it.

358  Chapter 8:  Getting Input from Users: Forms and Controls

This can help simplify the UI tremendously, making it much easier to figure out. It may
even remove the requirement for an Input Hint or Input Prompt, though they’re often seen
together, as in the example in Figure 8-1.

You might consider Structured Format as an alternative, but that pattern works best when
the input format is entirely predictable (and usually numeric, like telephone numbers).

How

The catch (you knew there would be one): it turns a UI design problem into a program-
ming problem. You have to think about what kinds of text a user is likely to type in. Maybe
you ask for a date or time, and only the format varies—that’s an easy case. Or maybe you
ask for search terms, and the variation is what the software does with the data. That’s
harder. Can the software disambiguate one case from another? How?

Each application uses this pattern differently. Just make sure the software’s response to
various input formats matches what users expect it to do. Test, test, and test again with
real users.

Examples

The New York Times uses Forgiving Format in several features that need information from
users. Figure 8-2 shows examples from its real estate search and from its financial quotes
feature.

Figure 8-2. Two text fields in the New York Times website

One place where this pattern should be used, but usually isn’t, is when credit card num-
bers are requested from the user. As long as 16 digits are typed, why should the form care
whether the user separates them by spaces, or by hyphens, or by nothing at all? It’s not
difficult to strip out separating characters. PayPal, for example, doesn’t accept spaces in
credit card numbers (see Figure 8-3).

The Patterns  359 

Figure 8-3. PayPal

Figure 8-4 comes from Outlook’s tool for setting up a meeting. Look at the “Start time:”
and “End time:” fields at the bottom of the screenshot—you don’t need to give it a fully
defined date, like what’s in the text fields now. If today is April 24 and you want to set up
a meeting for April 29, you can type any of the following terms:

•	 next Thu

•	 nxt thu

•	 thu

•	 29/4/2004

•	 4/29/2004

•	 29/4

•	 4/29

•	 five days

•	 5 days

And so on—there are probably other accepted formats, too. The specified date then is
“echoed back” to the user in the appropriate format for the user’s language and location.

Figure 8-4. Microsoft Outlook

In other libraries

http://ui-patterns.com/patterns/ForgivingFormat

http://quince.infragistics.com/Patterns/Forgiving%20Format.aspx

http://ui-patterns.com/patterns/ForgivingFormat
http://quince.infragistics.com/Patterns/Forgiving Format.aspx

360  Chapter 8:  Getting Input from Users: Forms and Controls

Structured Format

Figure 8-5. Photoshop installation screen

What

Instead of using one text field, use a set of text fields that reflect the structure of the re-
quested data.

Use when

Your interface requests a specific kind of text input from the user, formatted in a certain
way. That format is familiar and well defined, and you don’t expect any users to need to
deviate from the format you expect. Examples include credit card information, local tele-
phone numbers, and license strings or numbers.

It’s generally a bad idea to use this pattern for any data in which the preferred format may
vary from user to user. Consider especially what might happen if your interface is used in
other countries. Names, addresses, postal codes, and telephone numbers all have different
standard formats in different places. Consider using Forgiving Format in those cases.

Why

The structure of the text fields gives the user a clue about what kind of input is being
requested. For example, she can mentally map the six text fields in Figure 8-5 to the six-
chunk number written on her Photoshop CD case, and conclude that that’s the license
number she now needs to type in. Expectations are clear. She probably also realizes that
she doesn’t need to type in any spaces or hyphens to separate the six chunks.

This pattern usually gets implemented as a set of small text fields instead of one big one.
That alone can reduce data entry errors. It’s easier for someone to double-check several
short strings (two to five characters or so) than one long one, especially when numbers are
involved. Likewise, it’s easier to transcribe or memorize a long number when it’s broken
up into chunks. That’s how the human brain works.

Contrast this pattern to Forgiving Format, which takes the opposite tack: it allows you to
type in data in any format, without providing structural evidence of what’s being asked
for. (You can use other clues instead, like Input Hints.) Structured Format is better for very
predictable formats, Forgiving Format for open-ended input.

The Patterns  361 

How

Design a set of text fields that reflect the format being asked for. Keep the text fields short,
as clues to the length of the input.

Once the user has typed all the digits or characters in the first text field, confirm it for her
by automatically moving the input focus to the next field. She can still go back and re-edit
the first one, of course, but now she knows how many digits are required there.

You can also use Input Prompts to give the user yet more clues about what’s expected. In
fact, structured format fields for dates often do use Input Prompts, such as “dd/mm/yyyy”.

Examples

At its simplest, Structured Format literally can take the shape of the data, complete with
spaces, hyphens, and parentheses, as illustrated in the following table.

Telephone number (504) 555-1212

Credit card number 1021 1234 5678 0000

Date 12/25/2004

ISBN number 0-1950-1919-9

For date input, LiveJournal uses Structured Format in combination with a drop down to
choose a month (see Figure 8-6). It defaults to the current day and time.

Figure 8-6. LiveJournal

In other libraries

http://ui-patterns.com/patterns/StructuredFormat

http://quince.infragistics.com/Patterns/Structured%20Format.aspx

http://ui-patterns.com/patterns/StructuredFormat
http://ui-patterns.com/patterns/StructuredFormat
http://quince.infragistics.com/Patterns/Structured Format.aspx

362  Chapter 8:  Getting Input from Users: Forms and Controls

Fill-in-the-Blanks

Figure 8-7. The New York Times

What

Arrange one or more fields in the form of a prose sentence or phrase, with the fields as
“blanks” to be filled in by the user.

Use when

You need to ask the user for input, usually one-line text, a number, or a choice from a
drop-down list. You tried to write it out as a set of label/control pairs, but the labels’ typi-
cal declarative style (such as “Name:” and “Address:”) isn’t clear enough for users to un-
derstand what’s going on. You can, however, verbally describe the action to be taken once
everything’s filled out, in an active-voice sentence or phrase.

Why

Fill-in-the-Blanks helps to make the interface self-explanatory. After all, we all know how to
finish a sentence. (A verb phrase or noun phrase will do the trick, too.) Seeing the input,
or “blanks,” in the context of a verbal description helps the user understand what’s going
on and what’s being asked of him.

How

Write the sentence or phrase using all your word-crafting skills. Use controls in place of
words.

If you’re going to embed the controls in the middle of the phrase instead of at the end, this
pattern works best with text fields, drop-down lists, and combo boxes—in other words,
controls with the same form factor (width and height) as words in the sentence. Also,
make sure the baseline of the sentence text lines up with the text baselines in the controls,
or it’ll look sloppy. Size the controls so that they are just long enough to contain the user’s
choices, and maintain proper word spacing between them and the surrounding words.

http://quince.infragistics.com/Patterns/Structured Format.aspx

The Patterns  363 

This is particularly useful for defining conditions, as one might do when searching for
items or filtering them out of a display. The Excel and eBay examples in Figures 8-8 and
8-9 illustrate the point. Robert Reimann and Alan Cooper describe this pattern as an ideal
way to handle queries; their term for it is natural language output.*

There’s a big “gotcha” in this pattern, however: it becomes very hard to properly localize
the interface (convert it to a different language), since comprehension now depends upon
word order in a natural language. For some international products or websites, that’s a
nonstarter. You may have to rearrange the UI to make it work in a different language;
at the very least, work with a competent translator to make sure the UI can be localized.

Examples

The Excel cell-formatting dialog box shown in Figure 8-8 lets you choose the phrases
in this “sentence” from drop-down boxes. As the phrases change, the subsequent text
fields—showing 0.7 and 0.9 in this example—might be replaced by other controls, such as
a single text field for “greater than.”

Figure 8-8. Excel

When users search for items on eBay, they can use a long form to filter search results
according to various criteria. The form shown in Figure 8-9 has several examples of
Fill-in-the-Blanks.

*	 See their book About Face 2.0: The Essentials of Interaction Design (Wiley), page 205.

364  Chapter 8:  Getting Input from Users: Forms and Controls

Figure 8-9. eBay search filter form

In other libraries

http://ui-patterns.com/patterns/FillInTheBlanks

Input Hints

Figure 8-10. Twitter registration page

What

Beside or below an empty text field, place a phrase or example that explains what is
required.

http://ui-patterns.com/patterns/FillInTheBlanks
http://ui-patterns.com/patterns/FillInTheBlanks

The Patterns  365 

Use when

The interface presents a text field, but the kind of input it requires isn’t obvious to all users.
You don’t want to put more than a few words into the text field’s label.

Why

A text field that explains what goes into it frees users from having to guess. The hint pro-
vides context that the label itself may not provide. If you visually separate the hint from
the main label, users who know what to do can more or less ignore the hint, and stay
focused on the label and control.

How

Write a short example or explanatory sentence, and put it below or beside the text field.
The hint may be visible all the time, or it may appear when the text field receives input
focus.

Keep the text in the hint small and inconspicuous, though readable; consider using a font
two points smaller than the label font. (A one-point difference will look more like a mis-
take than an intended font-size change.) Also, keep the hint short. Beyond a sentence or
two, many users’ eyes will glaze over, and they’ll ignore the text altogether.

This pattern is often used in conjunction with Forgiving Format, as illustrated by the Word
example in Figure 8-11, or Structured Format. Alternative solutions include Input Prompt
(in which a short hint goes into the control itself), tool tips that show a description on
hover, and Good Defaults (which put an actual valid value into the control). The advantage
of Input Hints is that it leaves the control blank—the user is forced to consider the question
and give an answer, which is sometimes better than letting the user not think about it at all.

Examples

The printing dialog boxes used by several Microsoft Office applications supply an Input
Hint below a Forgiving Format text field—it takes page numbers, page ranges, or both
(Figure 8-11). The hint is very useful to anyone who’s never had to use the “Pages” option,
but users who already understand it don’t need to focus on the written text; they can just
go straight for the input field.

366  Chapter 8:  Getting Input from Users: Forms and Controls

Figure 8-11. Microsoft Word print dialog

Longer descriptions can be used in Input Hints when necessary. The examples from Gmail’s
registration page, shown in Figure 8-12, are about as long as you’d want to put next to a
text field—a user can click the links for further information. But most users will never
follow a link when they’re filling out a form, especially if they’re trying to get through it
quickly and don’t have major privacy concerns, so don’t depend on linked pages to convey
critical information.

Figure 8-12. Gmail registration page

Blogger places Input Hints on the far right of the form, with horizontal rules that align the
controls with their hints (see Figure 8-13). This is a graceful way to structure a page full
of Input Hints.

The Patterns  367 

Figure 8-13. Blogger registration page

Some forms show an Input Hint when the user puts input focus into the text field itself (see
Figure 8-14). This is nice because the hidden hints don’t clutter the interface or add visual
noise; however, the user doesn’t see them at all until he clicks on (or tabs into) the text
field. If you use these, note that you must leave space for them in the interface, just as you
would for Hover Tools (Chapter 6). Twitter, shown first in this example, uses both kinds.

368  Chapter 8:  Getting Input from Users: Forms and Controls

Figure 8-14. Twitter, Yahoo!, and Hotmail registration pages, all with dynamic Input Hints

In other libraries

http://quince.infragistics.com/Patterns/Input%20Hints.aspx

http://quince.infragistics.com/Patterns/Input Hints.aspx
http://quince.infragistics.com/Patterns/Input Hints.aspx

The Patterns  369 

Input Prompt

Figure 8-15. Yahoo! registration page

What

Prefill a text field or drop down with a prompt that tells the user what to do or type.

Use when

The UI presents a text field, drop down, or combo box for input. Normally you would use
a good default value, but you can’t in this case—perhaps there is no reasonable default, as
in the Yahoo! form in Figure 8-15.

Why

It helps make the UI self-explanatory. Like Input Hints, an Input Prompt is a sneaky way of
supplying help information for controls whose purpose or format may not be immedi-
ately clear.

With an Input Hint, someone quickly scanning the UI can easily ignore the hint (or miss
it entirely). Sometimes this is your desired outcome. But an Input Prompt sits right where
the user will type, so it can’t be ignored. The advantage here is that the user doesn’t have to
guess whether she has to deal with this control or not—the control itself tells her she does.
(Remember that users don’t fill out forms for fun—they’ll do as little as needed to finish
up and get out of there.) A question or an imperative “Fill me in!” is likely to be noticed.

An interesting side effect of this pattern is that users may not even bother to read the label
that prefixes the text field. Look again at Figure 8-15. The label “Name” is now completely
superfluous, in terms of the form’s meaning. Because the user’s eye will be drawn first to
the text fields, the “First Name” and “Last Name” prompts probably will be read before the
“Name” label anyway! That being said, don’t remove the labels—that prompt is gone once
the user types over it, and on subsequent readings of this form, she may not remember
what the control asks for.

If you’re very careful to implement this pattern correctly, you may be able to do away with
the label altogether. The prompt must be put back when the user erases the value, and the
requested information must be very familiar to the user (such as name or email).

370  Chapter 8:  Getting Input from Users: Forms and Controls

How

Choose an appropriate prompt string, perhaps beginning with one of these words:

•	 For a drop-down list, use Select, Choose, or Pick.

•	 For a text field, use Type or Enter.

End it with a noun describing what the input is, such as “Choose a state,” “Type your mes-
sage here,” or “Enter the patient’s name.” Put this phrase into the control where the value
would normally be. (The prompt itself shouldn’t be a selectable value in a drop down; if
the user selects it, it’s not clear what the software should do with it.)

Since the point of the exercise was to tell the users what they were required to do before
proceeding, don’t let the operation proceed until they’ve done it! As long as the prompt
is still sitting untouched in the control, disable the button (or other device) that lets the
user finish this part of the operation. That way, you won’t have to throw an error message
at the user.

For text fields, put the prompt back into the field as soon as the user erases the typed
response.

Use Good Defaults instead of an Input Prompt when you can make a very accurate guess
about what value the user will put in. The user’s email address may already have been
typed somewhere else, for instance, and the originating country can often be detected by
websites.

Examples

Figures 8-16 and 8-17 are two examples of forms that depend on the Input Prompt, in the
absence of actual labels. Both are asking for very simple, well-understood answers that
users should be able to type or select without thinking very hard about them. Both put
the Input Prompt back into the field if there is no user-typed value, as shown by the second
screenshot in each example. (Apple then turns the field yellow to reinforce that the value
is required to complete the form; this is a gentle variant of Same-Page Error Messages.)

The Culinary Culture example demonstrates the striking visual look that can be achieved
with a skillful combination of typography, icon design, and Input Prompt.

Figure 8-16. Apple’s purchase form

The Patterns  371 

Figure 8-17. CulinaryCulture.com

In other libraries

http://quince.infragistics.com/Patterns/Input%20Prompt.aspx

http://ui-patterns.com/patterns/InputPrompt

Password Strength Meter

Figure 8-18. Gmail registration page

What

Give the user immediate feedback on the validity and strength of a new password while
it is being typed.

http://quince.infragistics.com/Patterns/Input Prompt.aspx
http://quince.infragistics.com/Patterns/Input Prompt.aspx
http://ui-patterns.com/patterns/InputPrompt
http://ui-patterns.com/patterns/InputPrompt

372  Chapter 8:  Getting Input from Users: Forms and Controls

Use when

The UI asks the user to choose a new password. This is quite common for site registra-
tions. Your site or system cares about having strong passwords, and you want to actively
help users choose good ones.

Why

Strong passwords protect both the individual user and the entire site, especially when the
site handles sensitive information and/or social interactions. Weak passwords ought to be
disallowed because they permit break-ins.

A Password Strength Meter gives immediate feedback to the user about his new password—
is it strong enough or not? Does he need to make up a new one, and if so, with what char-
acteristics (numbers, capital letters, etc.)? If your system is going to reject weak passwords,
it’s usually best to do it instantly, not after the user has submitted the registration form.

How

While the user types his new password, or after keyboard focus leaves the text field, show
an estimate of the password strength beside the text field. At minimum, display a text and/
or graphic label indicating a weak, medium, or strong password, and special wording to
describe a too-short or invalid password. Colors help: red for unacceptable, green or blue
for good, and some other color (often yellow) in between.

If you can, show additional text with specific advice on how to make a weak password
better—a minimum length of eight characters (for instance), or the inclusion of numbers
or capital letters. A user might get frustrated if he repeatedly fails to produce a valid pass-
word, so help him be successful.

Also, the form containing the password field should use Input Hints or other text to explain
this beforehand. A short reminder of good password heuristics can be useful to users who
need reminders, and if your system will actually reject weak passwords, you should warn
the user about it before he finishes the form! Many systems require a minimum number
of characters for a valid password, such as six or eight.

(Remember, never actually show a password, and don’t make suggestions of alternative
passwords. General hints are all you can really give.)

An explanation of password security is beyond the scope of a UI pattern. There are excel-
lent online and print references for this topic, however, should you need to understand it
more deeply.

The Patterns  373 

Examples

Blogger’s Password Strength Meter, shown in Figure 8-19, displays five states, one of which
(“Too short”) tells the user specifically how to fix the password—eight characters are re-
quired. The blue link puts up a window describing how to create a strong password, and
there is an Input Hint (not shown) on the right side that tells the user about the eight-
character minimum.

Figure 8-19. Blogger’s five states

MSN shows only three states (see Figure 8-20). It also uses an Input Hint to describe the
minimum—“Six-character minimum with no spaces”—and offers a link to a more de-
tailed explanation. This meter is visually more heavyweight than Blogger’s.

374  Chapter 8:  Getting Input from Users: Forms and Controls

Figure 8-20. MSN’s three states

Yahoo! offers specific, detailed password advice in two different Input Hints that appear
when the password field received input focus (see Figure 8-21).

Figure 8-21. Yahoo!

In other libraries

http://ui-patterns.com/patterns/PasswordStrengthMeter

Code to do password checking is available for JavaScript and other languages. Look online
not just for the term password strength meter but also password meter, password checker,
and other variations.

http://ui-patterns.com/patterns/PasswordStrengthMeter
http://ui-patterns.com/patterns/PasswordStrengthMeter

The Patterns  375 

Autocompletion

Figure 8-22. Amazon

What

As the user types into a text field, anticipate the possible answers, show a selectable list of
them, and automatically complete the entry when appropriate.

Use when

The user types something predictable, such as a URL, the user’s own name or address,
today’s date, or a filename. You can make a reasonable guess as to what she’s attempting to
type—perhaps there’s a saved history of things this user has previously typed, for instance,
or perhaps she is picking from a set of preexisting values, such as a list of filenames in a
directory.

Search boxes, browser URL fields, email fields, common web forms (such as site registra-
tion or purchase), text editors, and command lines all seem to be much easier to use when
supported by Autocompletion.

Why

Autocompletion saves time, energy, cognitive burden, and wrist strain for the user. It turns
a laborious typing effort into a simple pick list (or less, if a single completion can be reli-
ably supplied). You can thus save your users countless seconds of work, and contribute to
the good health of thousands of wrists.

When the typed entries are long and hard to type (or remember), like URLs or email ad-
dresses, Autocompletion is quite valuable. It reduces a user’s memory burden by supplying
“knowledge in the world” in the form of a drop-down list. An additional benefit can be
error prevention: the longer or stranger the string that must be typed, the greater the odds
of the user making a typographical error. Autocompleted entries have no such problems.

376  Chapter 8:  Getting Input from Users: Forms and Controls

For mobile devices, it’s even more valuable. Typing text on a tiny device is no fun; if a user
needs to enter a long string of letters, appropriate Autocompletion can save her a great deal
of time and frustration. Again, email addresses and URLs are excellent candidates, to sup-
port mobile email and web usage.

Autocompletion is also common in text editors and command-line UIs. As users type com-
mands or phrases, the application or shell might offer suggestions for completion. Code
editors and OS shells are well suited for this, because the language used is limited and pre-
dictable (as opposed to a human language, such as English); it’s therefore easier to guess
what the user tries to type.

Finally, lists of possible autocompletions can serve as a map or guide to a large world of
content. Search engines and site-wide search boxes do this well—when the user types the
beginning of a phrase, an Autocompletion drop down shows likely completions that other
people have typed (or that refer to available content). Thus, small corrections and gentle
guidance are provided to a curious or uncertain user, and they offer a way to navigate a
small corner of the public mental landscape.

How

With each additional character that the user types, the software quietly forms a list of the
possible completions to that partially entered string. If the user enters one of a limited
number of possible valid values, use that set of valid values. If the possible values are wide
open, one of these might supply completions:

•	 Previous entries typed by this user, stored in a preferences or history mechanism

•	 Common phrases that many users have used in the past, supplied as a built-in “dic-
tionary” for the application

•	 Possible matches drawn from the content being searched or perused, as for a site-
wide search box

•	 Other artifacts appropriate to the context, such as company-wide contact lists for
internal email

From here, you can approach the interaction design of Autocompletion in two ways. One is
to show the user a list of possible completions on demand—for example, by pressing the
Tab key—and let him choose one explicitly by picking from that list. Many code editors
do this (see Figure 8-26 in the Examples section). It’s probably better used when the user
would recognize what he wants when he sees it, but may not remember how to type it
without help. “Knowledge in the world is better than knowledge in the head.”

The other way is to wait until there’s only one reasonable completion, and then put it in
front of the user, unprompted. Word does this with a tool tip; many forms do it by filling
in the remainder of the entry but with selection turned on, so another keystroke would
wipe out the autocompleted part. Either way, the user gets a choice about whether to re-
tain the Autocompletion or not—and the default is to not keep it.

The Patterns  377 

You can use both approaches together, as in Figure 8-26.

Make sure that Autocompletion doesn’t irritate users. If you guess wrong, the user won’t
like it—he then has to erase the Autocompletion and retype what he meant in the first
place, avoiding having Autocompletion pick the wrong completion yet again. These inter-
action details can help prevent irritation:

•	 Always give the user a choice to take the completion or not take it; default to “no.”

•	 Don’t interfere with ordinary typing. If the user intends to type a certain string and
just keeps typing in spite of the attempts at Autocompletion, make sure the result is
what the user intended to type.

•	 If the user keeps rejecting a certain Autocompletion in one place, don’t keep offering
it. Let it go at some point.

•	 Guess correctly.

Here’s one possible way to implement Autocompletion cheaply. You can turn a text field
into a combo box (which is a combination of a typable text field and a drop down). Each
time the user enters a unique value into the text field, make a new drop-down item for it.
Now, if your GUI toolkit allows type-ahead in combo boxes (as many do), the drop-down
items are automatically used to complete whatever the user types. Refer back to Figure
8-22 at the top of the pattern for a typical example; most web browsers now keep the most
recently visited sites in a combo box where the user types URLs.

Examples

Many email clients, of course, use Autocompletion to help users fill in To: and CC: fields.
They generally draw on an address book, contacts list, or list of addresses you’ve ex-
changed email with. The example from Mac Mail, shown in Figure 8-23, shows a single
completion suggested upon typing the letter c; the completed text is automatically high-
lighted, so a single keystroke can get rid of it. You can thus type straight “through” the
completion if it’s wrong.

Figure 8-23. Mac Mail

Drop-down lists of Autocompletion possibilities can take many forms. Figure 8-24 shows
several examples of drop-down list formatting.

378  Chapter 8:  Getting Input from Users: Forms and Controls

Figure 8-24. Counterclockwise from top left: Chrome, Firefox, Kayak, Google, Safari for iPhone, and
Mac OS Spotlight

Dopplr, shown in Figure 8-25, doesn’t show the whole long list of completions. Instead, it
simply tells the user that there are 40 possible completions (for instance), and puts them
behind a link.

The Patterns  379 

Figure 8-25. Dopplr

Finally, code editors such as Visual Studio invest in very complex Autocompletion mecha-
nisms (see Figure 8-26). Visual Studio’s IntelliSense completes the built-in keywords of a
programming language, of course, but it also draws on the functions, classes, and variable
names defined by the user. It even can show the arguments to functions that you invoke
(in the righthand screenshot). Furthermore, both “select from a list” and “take the one
completion that matches” approaches are supported, and you can call up Autocompletion
on demand by pressing Ctrl-space bar.

Autocompletion in Visual Studio thus serves as a typing aid, a memory aid, and a browser
of context-appropriate functions and classes. It’s very useful.

Figure 8-26. Visual Studio

In other libraries

http://developer.yahoo.com/ypatterns/selection/autocomplete.html

http://ui-patterns.com/patterns/Autocomplete

http://patternry.com/p=autocomplete/

http://www.welie.com/patterns/showPattern.php?patternID=autocomplete

(Note that most other libraries call this pattern “Autocomplete.”)

http://developer.yahoo.com/ypatterns/selection/autocomplete.html
http://developer.yahoo.com/ypatterns/selection/autocomplete.html
http://ui-patterns.com/patterns/Autocomplete
http://ui-patterns.com/patterns/Autocomplete
http://patternry.com/p=autocomplete/
http://patternry.com/p=autocomplete/
http://www.welie.com/patterns/showPattern.php?patternID=autocomplete
http://www.welie.com/patterns/showPattern.php?patternID=autocomplete

380  Chapter 8:  Getting Input from Users: Forms and Controls

Dropdown Chooser

Figure 8-27. Microsoft Word

What

Extend the concept of a menu by using a drop-down or pop-up panel to contain a more
complex value-selection UI.

Use when

The user needs to supply input that is a choice from a set (such as in the color example
in Figure 8-27), a date or time, a number, or anything other than free text typed at a key-
board. You want to provide a UI that supports that choice—a nice visual rendering of the
choices, for instance, or interactive tools—but you don’t want to use space on the main
page for that; a tiny space showing the current value is all you want.

Why

Most users are very familiar with the drop-down list control (called a “combo box” when
used with a free-typing text field). Many applications successfully extend this concept to
drop downs that aren’t simple lists, such as trees, 2D grids, and arbitrary layouts. Users
seem to understand them with no problem, as long as the controls have down-arrow but-
tons to indicate that they open when clicked.

Dropdown Choosers encapsulate complex UIs in a small space, so they are a fine solution
for many situations. Toolbars, forms, dialog boxes, and web pages of all sorts use them
now. The page the user sees remains simple and elegant, and the chooser UI only shows
itself when the user requests it—an appropriate way to hide complexity until it is needed.

The Patterns  381 

How

For the Dropdown Chooser control’s “closed” state, show the current value of the control in
either a button or a text field. To its right, put a down arrow. This may be in its own button
or not, as you see fit; experiment and see what looks good and makes sense to your users.
A click on the arrow (or the whole control) brings up the chooser panel, and a second
click closes it again.

Design a chooser panel for the choice the user needs to make. Make it relatively small
and compact; its visual organization should be a familiar format, such as a list, a table, an
outline-type tree, or a specialized format like a calendar or calculator (see the examples in
the next section). See Chapter 5 for a discussion of list presentation.

Scrolling the panel is OK if the user understands that it’s a choice from a large set, such as
a file from a filesystem, but keep in mind that scrolling one of these pop-up panels is not
easy for people without perfect dexterity!

Links or buttons on the panel can in turn bring up secondary UIs—for example, color-
chooser dialog boxes, file-finder dialog boxes, or help pages—that help the user choose
a value. These devices usually are modal dialog boxes. In fact, if you intend to use one of
these modal dialogs as the primary way the user picks a value (say, by launching it from a
button), you could use a Dropdown Chooser instead of going straight to the modal dialog.
The pop-up panel could contain the most common or recently chosen items. By making
frequently chosen items so easy to pick, you reduce the total time (or number of clicks) it
takes for an average user to pick values.

Examples

Photoshop’s compact, interaction-rich toolbars use Dropdown Choosers heavily. Two ex-
amples, Brush and Opacity, are shown in Figure 8-28. The Brush chooser is a selectable
list with a twist—it has extra controls such as a slider, a text field, and a pull-right button
(the circular one) for yet more choices. The Opacity chooser is a simple slider, and the text
field above it echoes its value.

Figure 8-28. Photoshop drop downs

382  Chapter 8:  Getting Input from Users: Forms and Controls

The Thumbnail Grid pattern (Chapter 5) is often used in Dropdown Choosers in place of a
text-based menu. The examples from PowerPoint (Figure 8-29) and iWeb (Figure 8-30)
demonstrate two styles of Thumbnail Grid.

Figure 8-29. Microsoft PowerPoint

Figure 8-30. iWeb “Theme” Dropdown Chooser

The Patterns  383 

In other libraries

http://quince.infragistics.com/Patterns/Drop%20Down%20Chooser.aspx

You could also look online for specific types of Dropdown Choosers, such as color pickers,
date pickers or calendars, font pickers, or numeric sliders.

List Builder

Figure 8-31. A dialog box from Microsoft Outlook

What

Show both the “source” and the “destination” lists on the same page; let the user move
items between them, via buttons or drag-and-drop.

Use when

You’re asking the user to create a list of items by choosing them from another list. The
source list may be long—too long to easily show as a set of checkboxes, for instance.

Why

The key to this pattern is to show both lists on the same page. The user can see what’s
what—she doesn’t have to jump to and from a modal chooser dialog box, for instance.

A simpler alternative to List Builder might be a single list of checkbox items. Both solve the
“select a subset” problem. But if you have a very large source list (such as an entire filesystem),
a list of checkboxes doesn’t scale—the user can’t easily see what’s been checked off, and
thus may not get a clear picture of what she selected. She has to keep scrolling up and
down to see it all.

http://quince.infragistics.com/Patterns/Drop Down Chooser.aspx
http://quince.infragistics.com/Patterns/Drop Down Chooser.aspx

384  Chapter 8:  Getting Input from Users: Forms and Controls

How

Put the source list and the destination list next to each other, either left to right or top
to bottom. Between the two lists, put Add and Remove buttons (unless your users find
drag-and-drop to be obvious, not requiring explanation). You could label the buttons with
words, arrows, or both.

This pattern provides room for other buttons, too. If the destination list is ordered, use
Move Up and Move Down buttons, as shown in Figure 8-31. (They could have arrow
icons too, instead of or in addition to the words.)

Depending on what kind of items you deal with, you could either move the items liter-
ally from the source to the destination—so the source list “loses” the item—or maintain
a source list that doesn’t change. A listing of files in a filesystem shouldn’t change; users
would find it bizarre if it did, since they see such a list as a model of the underlying file-
system, and the files aren’t actually deleted. But the list of “Available fields” in the Outlook
example in Figure 8-31 does lose the items. That’s a judgment call.

Give the lists multiple-selection semantics instead of single-selection, so users can move
large numbers of items from list to list.

Examples

Most modern implementations of this pattern depend upon drag-and-drop to move
items between areas; if those items are visual, all the better. Flickr, shown in Figure 8-32,
demonstrates a more contemporary approach to a List Builder: you can drag items from a
potentially long list of source images into a “batch” group in order to perform operations
on all batched images at once. Large text tells the user what to do at critical moments in
the interaction, such as starting a new batch or removing an image from the batch.

Figure 8-32. Flickr

In other libraries

http://www.welie.com/patterns/showPattern.php?patternID=parts-selector

http://www.welie.com/patterns/showPattern.php?patternID=parts-selector

The Patterns  385 

Good Defaults

Figure 8-33. Kayak

What

Wherever appropriate, prefill form fields with your best guesses at the values the user
wants.

Use when

Your UI asks the user any questions requiring form-like input (such as text fields or radio
buttons), and you want to reduce the amount of work that users have to do. Perhaps most
users will answer in a certain way, or the user has already provided enough contextual in-
formation for the UI to make an accurate guess. For technical or semirelevant questions,
maybe he can’t be expected to know or care about the answer, and “whatever the system
decides” is OK.

But supplying defaults is not always wise when answers might be sensitive or politically
charged, such as passwords, gender, or citizenship. Making assumptions like that, or pre-
filling fields with data you should be careful with, can make users uncomfortable or angry.
(And for the love of all that is good in the world, don’t leave “Please send me advertising
email” checkboxes checked by default!)

http://www.welie.com/patterns/showPattern.php?patternID=parts-selector

386  Chapter 8:  Getting Input from Users: Forms and Controls

Why

By providing reasonable default answers to questions, you save the users work. It’s really
that simple. You spare the user the effort of thinking about, or typing, the answer. Filling
in forms is never fun, but if having default answers provided halves the time it takes the
user to work through the form, he’ll be grateful.

Even if the default isn’t what the user wants, at least you offered an example of what kind
of answer is asked for. That alone can save him a few seconds of thought—or, worse, an
error message.

Sometimes you may run into an unintended consequence of Good Defaults. If a user can
skip over a field, that question may not “register” mentally with him. He may forget that
it was asked; he may not understand the implications of the question, or of the default
value. The act of typing an answer, selecting a value, or clicking a button forces the user to
address the issue consciously, and that can be important if you want the user to learn the
application effectively.

How

Prefill the text fields, combo boxes, and other controls with a reasonable default value.
You could do this when you show the page to the user for the first time, or you could use
the information the user supplies early in the application to dynamically set later default
values. (For instance, if someone supplies a U.S. zip code, you can infer the state, country,
and municipality from just that number.)

Don’t choose a default value just because you think you shouldn’t leave any blank controls.
Do so only when you’re reasonably sure that most users, most of the time, won’t change
it—otherwise, you will create extra work for everybody. Know your users!

Occasional-use interfaces such as software installers deserve a special note. You should
ask users for some technical information, such as the location of the install, in case they
want to customize it. But 90% of users probably won’t. And they won’t care where you
install it, either—it’s just not important to them. So it’s perfectly reasonable to supply a
default location.

The Patterns  387 

Examples

Kayak (Figure 8-33) supplies default values when a user begins a search for flights. Most
are quite reasonable: a round-trip economy flight with one traveler is common, and the
“From” city can be derived from either the user’s geographic location or the user’s previ-
ous searches. (The departure and arrival dates seem arbitrary, however.) The effect of
having all these defaults is that the user spends less time thinking about those parts of the
form, and she gets a quicker path to her immediate goal—the search results.

When an image canvas is resized in Photoshop, the dialog box shown in Figure 8-34 ap-
pears. The original image was 476 × 306, as shown. These dimensions become the default
Width and Height, which is very convenient for several use cases. If I want to put a thin
frame around the image, I can start with the existing dimensions and increase them by
just two pixels each; if I want to make the image canvas wider but not taller, I only need to
change the Width field; or I could just click OK now and nothing changes.

Figure 8-34. A dialog from Photoshop

In other libraries

http://patternry.com/p=good-defaults/

http://ui-patterns.com/patterns/GoodDefaults

http://patternry.com/p=good-defaults/
http://patternry.com/p=good-defaults/
http://ui-patterns.com/patterns/GoodDefaults

388  Chapter 8:  Getting Input from Users: Forms and Controls

Same-Page Error Messages

Figure 8-35. Netflix registration box

What

Place form error messages directly on the page with the form itself; mark the top of the
page with an error message, and if possible, put indicators next to the originating controls.

Use when

Users might enter form information that somehow isn’t acceptable. They may skip re-
quired fields, enter numbers that cannot be parsed, or type invalid email addresses, for
instance. You want to encourage them to try again. You want to point out typos before
they become a problem, and help puzzled users understand what is asked for.

Why

Traditionally, applications have reported error messages to users via modal dialog boxes.
Those messages could be very helpful, pointing out what the problem was and how you
could fix it. The problem is that you had to click away the modal dialog box to fix the error.
And with the dialog box gone, you couldn’t read the error message anymore! (Maybe you
were supposed to memorize the message.)

Then, when web forms came along, error messages often were reported on a separately
loaded page, shown after you clicked the Submit button. Again, you can read the message,
but you have to click the Back button to fix the problem; once you do that, the message is
gone. Then you need to scan the form to find the field with the error, which takes effort
and is error-prone.

Most web forms now place the error message on the form itself. By keeping both messages
and controls together on the same page, you allow the user to read the message and make
the form corrections easily, with no jumping around or error-prone memorization.

http://ui-patterns.com/patterns/GoodDefaults

The Patterns  389 

Even better, some web forms put error messages physically next to the controls where the
errors were made. Now the user can see at a glance where the problems were—no need to
hunt down the offending field based just on its name—and the instructions for fixing it
are right there, easily visible.

How

First, design the form to prevent certain kinds of errors. Use drop downs instead of open
text fields, if the choices are limited and not easy to type. For text fields, offer Input Hints,
Input Prompts, Forgiving Format, Autocompletion, and Good Defaults to support text entry.
Clearly mark all the required fields as required (with asterisks), and don’t ask for too many
required fields in the first place.

When errors do happen, you should show some kind of error message on top of the form,
even if you put the detailed messages next to the controls. The top is the first thing people
see. (It’s also good for visually impaired users—the top of the form is read to them first,
so they know immediately that the form has an error.) Put an attention-getting graphic
there, and use text that’s stronger than the body text: make it red and bold, for instance.

Now mark the form fields that caused the errors. Put specific messages next to them, if
you can—this will require extra space beside, above, or below the fields—but at the least,
use color and/or a small graphic to mark the field, as shown in Figure 8-35.Users com-
monly associate red with errors in this context. Use it freely, but since so many people are
colorblind with respect to red, use other cues, too: language, bold text (not huge), and
graphics.

If you’re designing for the Web or some other client/server system, try to do as much vali-
dation as you can on the client side. It’s much quicker. Put the error messages on the page
that’s already loaded, if possible, to avoid a page-load wait.

A tutorial on error-message writing is beyond the scope of this pattern, but here are some
quick guidelines:

•	 Make them short, but detailed enough to explain both which field it is and what went
wrong: “You haven’t given us your address” versus “Not enough information.”

•	 Use ordinary language, not computerese: “Is that a letter in your zip code?” versus
“Numeric validation error.”

•	 Be polite: “Sorry, but something went wrong! Please click ‘Go’ again” versus “JavaScript
Error 693” or “This form contains no data.”

Examples

Twitter’s and Mint’s registration pages (Figures 8-36 and 8-37, respectively) show either
an error message or an “OK” message. This can help for short forms.

390  Chapter 8:  Getting Input from Users: Forms and Controls

Figure 8-36. Twitter registration page

Figure 8-37. Mint registration page

Yahoo! uses humor in some of its error messages, while others are straight (see Figure 8-38).

Figure 8-38. Yahoo! registration page

The Patterns  391 

When you add a not fully specified item to your cart at Hanna Andersson’s site, it uses
a gentle message to remind you to fill in missing information, as shown in Figure 8-39.
(The Input Prompt makes it too easy to overlook this field on the form, actually.) Once you
do add it, the same space might be used for an additional message of interest. Note also
that once the form detects that enough information is present, it puts the Begin Checkout
button on the form.

Figure 8-39. Hanna Andersson’s purchase form

In other libraries

http://ui-patterns.com/patterns/InputFeedback

http://www.welie.com/patterns/showPattern.php?patternID=input-error

These two patterns are named “Input Feedback” and “Input Error Message.” You can
search for similar variations on the pattern name.

http://ui-patterns.com/patterns/InputFeedback
http://ui-patterns.com/patterns/InputFeedback
http://www.welie.com/patterns/showPattern.php?patternID=input-error
http://www.welie.com/patterns/showPattern.php?patternID=input-error

Chapter 9

Using Social Media

In 2009 and 2010, social media went mainstream. Companies, products, and nonprofits
rushed to establish presences on Facebook, Twitter, and media repositories such as Flickr
and YouTube. If they already had blogs, the streams of bite-size messages on Twitter and
Facebook gave those blogs new audiences. Organizations discovered that if they published
a steady stream of appealing content, customers and influencers would pay attention to
them—and if a piece of content “went viral,” that organization’s brand would spread far
and wide. For free!

Well, not really for free.

Organizations put in a lot of effort to establish successful social media presences. Someone
has to spend a lot of time writing and disseminating content; someone else needs to spend
time reading relevant conversations across the Web and responding sensitively to them.
Valuable home page real estate may support these social media efforts, and pages on other
sites (such as Facebook or YouTube) must be designed and tended. And someone needs to
devise an overall strategy: where is effort spent, when, and on what topics?

A few best practices are emerging that can inform those efforts. Social media is still a
young field, and specific recommendations will change rapidly over the months and
years. Like the rest of this book, this chapter’s principles and patterns aren’t hard-and-fast
rules, though ideally they will outlast 2010’s most popular sites and technologies.

This chapter will focus on one aspect of online social interaction: how to use the various
forms of social media to promote a brand, share an idea, disseminate a video or other ar-
tistic expression, and otherwise support your particular enterprise. The key is to acquire
followers—people who voluntarily listen to what you have to say. Brands that create excel-
lent experiences for their followers gain huge audiences from their social media efforts.
(Here, we will keep the scope of this chapter broad enough to include “brands” that are
personal, nonprofit, arts-based, cause-driven, or just for fun.)

394  Chapter 9:  Using Social Media

What This Chapter Does Not Cover
Personal use of social media varies dramatically from person to person. There may be
best practices for personal consumption of social media—in fact, that might be a very fun
conversation to have among practitioners. But this book was written for designers of sites
and software, and so the focus will be on what those designers need.

Another topic this chapter will not cover is the design of online communities. That’s an
art unto itself, and its patterns and best practices are somewhat different from the ones
that are described in this chapter. As of this writing, a few organizations and brands have
successfully built online communities around their brand, but there’s not much evidence
that they actually help the brand. (If the brand is an online community, such as Stack
Overflow or Ravelry, that’s a different story; they can be quite successful. In any case, this
chapter doesn’t address them.)

Finally, many sites have sprung up that use social interaction in innovative ways. Delicious,
Yelp, Foursquare, and others have all created products out of collective intelligence, medi-
ated online. I expect that more of these kinds of sites will arise over the years. Erin Malone
and Christian Crumlish have skillfully written about some of these ways of gathering and
concentrating opinions in their book Designing Social Interfaces (O’Reilly, http://oreilly.com/
catalog/9780596154936/). This chapter complements that book.

The Basics of Social Media
What principles and patterns should you consider as you help develop a strategy for using
social media?

The first topic is so obvious and so basic that I gave it the number zero. It’s something you
need to do before you create any social media presence at all:

0. Listen.
Find out where people are talking about your brand, product, organization—or com-
petitors. Go beyond that, too: which broad topics touch on your brand’s purpose or
mission, and what are people saying about those topics? If your organization has
something positive to contribute, take part in those conversations.

•	 Find the online conversations and read them. Use tools to help you monitor
them if necessary, especially if you’re working for a well-known brand with a
strong online presence.

•	 Make sure the organization knows what is being said about it, even if the com-
ments are negative.

•	 In reputable places with a large readership, such as certain well-known blogs,
have someone from your organization sign up and participate in the conversa-
tions. Make it clear that that person formally represents the organization.

http://oreilly.com/catalog/9780596154936/
http://oreilly.com/catalog/9780596154936/

The Basics of Social Media  395 

•	 When you participate, answer questions, offer information, gently correct
misperceptions, and acknowledge gripes.

•	 Be a responsive, dignified presence; don’t be too chatty, and don’t be too defen-
sive. And hold back on the sales pitches.

Now we’ll talk about the active, creative aspects of using social media. How do you
build a fruitful social media presence that people enjoy following?

The following six principles come more or less in order of importance. If you don’t
write content that people like to read (principle 1), there’s no point in spending effort
to disseminate it or make it findable, for instance. Some of these recommendations
will be relevant to your situation, and some will not. Principles 5 and 6, especially, are
uncommon because of the effort they require.

1. Produce good stuff.
Write, design, record, or otherwise create items that people enjoy consuming. Produce
them regularly and frequently enough to keep people interested. Set up conversations
around those items to make them even more intriguing—invite Facebook comments,
for instance—and participate in those conversations yourself.

•	 Create an Editorial Mix that represents your organization well. Generate original
content that appeals to different people, using a mixture of length, style, and
media type (text, images, video, podcast).

•	 Link to other people’s content. Use Repost and Comment to augment your original
material and to give credit to other worthy sites on the Web.

•	 Having Personal Voices in your mix can be more appealing than a single, generic
corporate voice.

•	 Use Conversation Starters to prompt followers to respond. Once someone engages
in a conversation with you, she’s more likely to come back.

2. Push that good stuff out to readers.
Go to wherever they spend their time: email, Facebook, Twitter, RSS feeds, Digg, or
wherever you discover your readers are hanging out online. With your readers’ permis-
sion, get your content into their personal News Streams (Chapter 2)—the daily flow of
news and updates they get via those services. (In other words, make them followers.)

•	 Use more than one social media channel or service to reach as many readers as
you reasonably can. Meet them where they are; don’t expect them to join a new
service just to get your updates.

•	 Don’t overwhelm your followers with too much content. Use the different ser-
vices wisely, according to the conventions developed for each one. Develop a
Timing Strategy for releasing content.

•	 Put Social Links on your home page to direct readers to your social media chan-
nels; make it easy for them to become followers.

396  Chapter 9:  Using Social Media

•	 If your organization produces a lot of content and has many different audiences
for different products or topics, consider using Specialized Streams instead of one
very busy stream of content.

•	 Use the Inverted Nano-pyramid to write status updates, summaries, and headlines.
These attract more readers when they are written skillfully and “hook” people
into reading more of your content.

3. Let readers decide which stuff is good.
Give readers a way to share your content with their own followers, and let readers
send items privately to close ties. Gather feedback via voting systems, thumbs-up/
down gadgets, and other systems. Note which items have active conversations about
them, as this is another signal of “good”-ness.

•	 Provide mechanisms for people to comment on the items you post, but be selec-
tive. Low-interest news items or blog posts don’t draw many comments, and empty
comment areas don’t draw attention. Lively ones, however, can pull in more readers.

•	 Put a Sharing Widget beside your posts, so people can easily share them with their
own social followers. This is a very powerful mechanism; it disseminates your
content to more people, engages the people who do the sharing, and gives you
data about which items are most popular.

•	 “Email this” buttons let readers send items privately to their closer social ties.
Emailed articles are likely to be read by the recipients, since someone they know
has specifically recommended it to them; this kind of Personal Recommendation
(Chapter 1) is powerful.

•	 When you post items such as product descriptions or recipes—things for which
negative reviews won’t reflect badly on your organization—consider letting peo-
ple review or rate these items. Their collective intelligence can identify the bad
and good for other readers. (You may invite trouble, however, if you ask people
to rate items that your organization directly produces and is invested in.)

•	 Let viewers “vote up” their favorite pieces of content. You might do this with a
“Like” control, a star, a thumbs-up, or some other mechanism. For more details,
see the “Vote to Promote” pattern in the Yahoo! pattern library or in Designing
Social Interfaces.

4. Make the good stuff findable.
Organize your home page well; put fresh content there regularly, and use sidebars to
show most-viewed items, best-of lists, and other views into your library of content
items. Show related items to users who click through, and make archived items and
conversations available. Put your content where search engines can find it, because in
the long run, that’s how most people will arrive at it anyway.

The Basics of Social Media  397 

•	 Put a News Box on your home page to showcase your most recent articles, news
items, blog posts, videos, and so on. These are usually “social objects,” dissemi-
nated via social media and commented upon by the public.

•	 If you collect data on how many times an item is shared, emailed, rated, or com-
mented upon, you can create a Content Leaderboard to showcase the most popular
items.

•	 Consider creating a “best-of ” list for your blog, video library, or other large col-
lection of content. This gives newcomers a convenient place to start. Make sure
someone curates it competently so that it remains both accurate and fresh.

•	 When a reader clicks through to the blog post, news item, and so forth, show him
a set of links to related content. Presumably the reader is interested in this topic;
would he like to read more material on the same topic? Keep him reading and
clicking through to pages on your site.

•	 Check that your material shows up on search engines. Make sure the titles and
other metadata identify the content items well. Also check that your site’s search
box finds content correctly.

•	 Maintain stable, well-named social media identities. Can a random Facebook user
find the right Facebook page via a search for your organization’s name? Or does
she have to go to your actual website and follow the Social Links to get there? (That
should also be possible, of course, but searching within a social media site is less
effort for the user.)

5. Mingle readers’ good stuff with your good stuff.
Publish guest-written articles, blog posts, reviews, and amateur videos. Hold photo
contests and show off the winning images—with attribution, of course. Most orga-
nizations never quite reach this point, which is fine; it’s not appropriate for every
company or nonprofit. But when your followers are both enthusiastic and talented,
work with them!

6. Foster community.
Again, this is not appropriate for every organization, but some have built entire on-
line communities around a well-loved idea or activity—gardening, gaming, music,
technology, and so on. There’s not much evidence that communities actually help
build a brand or increase market share, so don’t count on that. What these can do
is give people an online place to go, where they can ask questions, form friendships,
share ideas, help each other out, vent, be silly, and share things that they (not you)
judge to be interesting.

398  Chapter 9:  Using Social Media

The Patterns
Consider using the following patterns for social content production:

1.	 Editorial Mix

2.	 Personal Voices

3.	 Repost and Comment

4.	 Conversation Starters

5.	 Inverted Nano-pyramid

When you design the mechanisms for when, where, and how to disseminate content, use
these:

6.	 Timing Strategy

7.	 Specialized Streams

8.	 Social Links

9.	 Sharing Widget

10.	 News Box

11.	 Content Leaderboard

12.	 Recent Chatter

Editorial Mix

Figure 9-1. Topics covered by Epicurious on Facebook

The Patterns  399 

What

Publish a regular series of articles or links that include a mix of news, human-interest
pieces, photos, videos, public service announcements, and other types of content. Refrain
from direct self-promotion most of the time.

Use when

You want to increase name recognition, goodwill toward your organization, connections
with customers, and possibly sales. You want readers to follow and enjoy the content you
publish, and you have the resources to find or produce that content.

Why

A variety of topics and media types will appeal to a broader group of people than a nar-
rower set of interests. Some of those people may learn about topics they wouldn’t otherwise
have known about, simply because you put it in their stream.

A more fundamental point is that each piece needs to be interesting by itself. You want fol-
lowers to read the pieces you write, follow the links you post, view your videos, and look
forward to your future posts. Better yet, you want your followers to repost those items to
their own followers and close ties—this gets your name out there to more people in a viral
fashion. Some of them may then choose to follow you.

How

Choose a set of topics that are both related to your mission and interesting to lots of
people. Of the organizations studied for this chapter, those topics have included food,
sports, nature, travel, green technologies, politics, parenting, disaster relief, high tech, and
science. People get passionate about these subjects. What topics can you cover that evoke
passion and high interest?

Develop a mix that’s appropriate for your organization. Everyone who uses social media
successfully has a unique blend of content types and topics, though variety and “interest-
ingness” are common to all.

Long written content can be posted to your blog. That blog post can then be linked from
shorter-form or microblogging sites, such as Twitter. (Most organizations don’t propagate
all their blog posts to these other channels.) Short, ephemeral items might be posted di-
rectly to the microblogs.

Encourage followers to comment on the things you post. This is more likely to happen
on social networks such as Facebook, or microblogging sites such as Twitter. Sometimes
people leave comments on blog posts, but as of this writing, conversations don’t take place
on blogs when there are better alternatives.

400  Chapter 9:  Using Social Media

Don’t overload the social media channels with too much content! See the Timing Strategy
pattern for more information about quantity and timing.

Avoid overt marketing most of the time. In a larger sense, of course, it’s all marketing; but
readers know when they’re being subjected to a sales pitch, and they don’t like it. They
probably didn’t subscribe to your updates to be deluged by commercials. So post informa-
tive or entertaining content most of the time, and limit the advertisements to very spe-
cific and useful items—discount codes, new products, or reminders about popular sales
events. Ask yourself before posting: if your followers didn’t see this, would some of them
be sad to have missed it?

Here are some types of content that you may consider:

•	 News articles

•	 Interviews with subject experts

•	 Short, pithy quotes and one-liners

•	 Product reviews

•	 Essays or videos about what happens “behind the scenes” at your organization

•	 Recipes and how-to instructions

•	 Public service announcements

•	 Ways that people can help out with charities or other altruistic efforts

•	 Humor

•	 Opinion pieces

•	 Letters from readers

•	 Short stories, real or fictional

•	 Musical or artistic performances, usually on video

•	 Slideshows

•	 Podcasts

•	 Questions intended to evoke reader responses; see the Conversation Starters pattern

•	 Regular commentary from high-profile employees; see the Personal Voices pattern

•	 Other people’s blog posts; see the Repost and Comment pattern

Remember that the material you provide in your social stream will be used by your follow-
ers for their own purposes: forming or supporting an online identity (“I’m interested in this
topic”), passing information to their close ties, entertaining their larger circle of friends,
indirectly stating an opinion, or just connecting. Will your followers be willing to do that
with the content you produce? Is it funny, controversial, beautiful, truthful, or authentic?

The Patterns  401 

Examples

Starbucks publishes content that its customers would be interested in: subjects include
coffee, tea, store specials, music, altruistic efforts, and other topics. Some are text-based
articles, some are video clips, and some are reposted from other sources. Figure 9-2 shows
Starbucks’ Facebook page.

Corporate blogs need to achieve a delicate balance between focus and diversity of topics.
As shown in Figure 9-3, Whole Foods’ blog deals with many topics related to natural food,
whereas the Google blog, reflecting Google’s variety of products and services, covers a
much broader range of topics.

Figure 9-2. The Facebook page for Starbucks

402  Chapter 9:  Using Social Media

Figure 9-3. Headlines from the Whole Foods and Google blogs

Personal Voices

Figure 9-4. Tony Hsieh’s Twitter feed

The Patterns  403 

What

Encourage individuals to use their own voices, separate from the social media streams
published by the organization itself. Let them publish blogs and write guest blog posts;
encourage them to use Twitter and other social channels.

Use when

You have social media champions within your organization—people who are willing to
put themselves out there, as both individuals and representatives. These may be domain
experts, engineers, marketing people, or even CEOs. You don’t object to having multiple
social media voices, other than the one official voice of the organization.

Why

A personal voice humanizes your brand. Readers often connect better with an individual
human being, with a name and a face, than with a brand or organization.

How

Let your employees write social content as themselves, with their names on their posts.
Use personal anecdotes, experiences, memories, reviews of products in actual use, and
other topics that humanize the author.

Consider whether to publish guidelines for employees’ social media participation, beyond
the obvious “don’t publish anything that will get us sued.” Some companies, such as SAP
and Oracle, put their guidelines on the Web to serve as examples.

Examples

The CEO of Zappos tweets frequently, and as of this writing has 1.7 million followers (see
Figure 9-4 at the top of the pattern). Tony Hsieh’s quirky, humorous, very personal tweets
draw lots of attention, without ever being overt advertising for the brand. Zappos also
encourages its other employees to use Twitter, and the company’s website devotes a page
to the tweets sent out by its employees (see Figure 9-5).

404  Chapter 9:  Using Social Media

Figure 9-5. Zappos employee tweets

Several of CNN’s well-known anchors and reporters use Twitter, including Wolf Blitzer,
Anderson Cooper, and Ed Henry (see Figure 9-6). These posts tend to have much more
personality and intimacy than the “official” CNN tweets. For a complete list, see the CNN
Twitter list called @CNN/anchors-and-reporters.

The Patterns  405 

Figure 9-6. Personal Twitter feeds for CNN’s anchors

Large technology companies Google and IBM encourage their employees to create public
blogs, which are then listed prominently in corporate web pages; see Figure 9-7. (In fact,
employees are the only social media presence that IBM has.)

406  Chapter 9:  Using Social Media

Figure 9-7. Some of IBM’s and Google’s employee blogs

Repost and Comment

Figure 9-8. Mashable repost of a viral YouTube video

The Patterns  407 

What

Instead of always generating your own content, find works on other sites that you can
link to, quote, or repost. Add your own commentary, or invite your readers to comment.

Use when

You see the role of your social media presence to partially be that of an aggregator: you
find good stuff out there that you know your audience will enjoy, and you post it for them.
You serve as an editor and thought leader whose taste is trusted by your readers.

Not all organizations will find this pattern appropriate. Some may prefer to publish only
the content they create themselves.

Why

If your presence is seen as a go-to site for good stuff, you’ll acquire more followers. These fol-
lowers then see your logo or name whenever your reposted content appears in their streams.

You don’t have to generate content every time you want to push something out to followers.
Writing fresh, original content is hard, and more so when you have to do it weekly or more
(as you should, to maintain freshness). In exchange for the time you spend looking for re-
postable items, you can put together a steady stream of posts that interest your readers.

If the content you produce tends to be of only one type, such as essays or photos, including
links to other people’s content gets you closer to a desired Editorial Mix.

Reposts and links direct deserved attention toward other sites and people. On the Web,
no organization is isolated; there are always other bloggers, reviewers, forums, and orga-
nizations that deal with similar topics. By reposting their work and giving credit where it’s
due, you give them attention, validate them, and help them increase their readership. And
social reciprocity may kick in—they might do the same for you!

You become part of a larger conversation around events and topics of interest. By finding
an obscure news story or video and showing it to your readers, for instance, you invite
your readers to carry on a conversation around it, either in your repost or in the original
poster’s context. (Your readers, in turn, may repost it themselves to their own followers.)

How

Find content that appeals to your followers. Use your judgment carefully: does it meet the
same high standards that you use for your own content? Is it something that your follow-
ers will appreciate enough to repost to their own followers? Has it already been widely
reposted on the Web so that you would look outdated if you reposted it? (And is it a scam
or urban legend? Check first!)

Make sure followers can tell what the reposted article is about. Does its title or summary
describe it well enough to attract interested readers? If not, the onus is on you to create a
headline or summary for it.

408  Chapter 9:  Using Social Media

Give your followers a reason why you thought this was worth reposting. If you’re working
in a blog, you have enough space to both quote portions of the source text and write a
commentary. You should give the full URL to the original material, too. (In Twitter, use a
URL shortening mechanism instead.)

Facebook has a built-in link posting mechanism that captures the destination’s title, summa-
ry, and thumbnail picture—all the factual stuff. Use the message to summarize just enough
to get the reader’s attention, and perhaps to write a commentary only a sentence or two long.

If you use Twitter, you know about retweeting. Before Twitter provided an actual mecha-
nism for it, Twitter users developed their own customs for retweeting and attributions.
If tweets were significantly shorter than the maximum length, that would leave room for
retweeters to add their own super-short commentary to a retweet (“Inspiring story.” “Will
this work?” “What do you think?” “Ironic.”). But the built-in retweet doesn’t permit that,
which is unfortunate. That being said, plenty of retweets stand on their own, since they’re
just informational; someone might propagate a tweet about an upcoming event, for in-
stance, and no commentary is expected.

Finally, offer your followers a chance to comment on the works that you repost. Facebook
comments are one obvious place; blog comments are another. When users do comment,
engage with them and help carry the conversation forward. There might be a conversation
already underway wherever the content was originally posted. However, your followers con-
stitute a unique group of people! Their conversations might have an entirely different quality.

Examples

Many companies use their Facebook pages to repost other people’s content so that their fol-
lowers can see things they wouldn’t have found on their own. In the examples in Figure 9-9,
REI reposts items that further its mission to promote the outdoors and sell outdoor gear.
(Note also the use of questions as Conversation Starters.)

Figure 9-9. REI’s use of Repost and Comment

The Patterns  409 

Figure 9-10 shows two ways that the American Red Cross’s blog reposts and comments
upon other sites’ content. Politely, the blogger makes a point of thanking the person who
called her attention to the earthquake graphic.

Figure 9-10. The American Red Cross’s use of Repost and Comment

Retweeting on Twitter can be done either with Twitter’s built-in mechanism or “by hand.”
In Figure 9-11, Tim O’Reilly uses both.

Figure 9-11. Two ways to retweet

410  Chapter 9:  Using Social Media

Conversation Starters

Figure 9-12. Tim Gunn posing a question to fans

What

Pose questions, riddles, or topics for discussion. Let your followers post answers and carry
on conversations, with you and among themselves.

Use when

You want people to respond to you and other readers so that you can engage them. Your
social media audience is capable of carrying on thoughtful discussions within the channel
you’re using, and you are willing to moderate those conversations if necessary.

Why

If you invite readers to participate, especially on a topic that interests them, they often will!

Once someone posts an answer to your conversation starter, he may come back and see
the additional responses (or have the responses emailed to him, in some systems).

You may also get more readers or followers simply because your conversation starters are
entertaining. You thus get more exposure for your social media channel.

The Patterns  411 

In the best of cases, the readers’ comments become interesting content in their own right.
People talk to each other, debate each other, agree with each other, go off on tangents, and
thus construct a conversational thread worth reading.

Conceptually, this pattern has some overlap with the idea of “crowdsourcing” problem
solutions. For instance, a blogger may ask her readers for answers to a factual question or
for stories on how they solved a problem that she is facing.

How

Understand which topics might get your audience fired up. Ask them to share their opinions,
guesses, and stories by posing questions. Some questions might have simple answers that are
easy for users to type quickly; others might evoke long and thoughtful responses. Choose
topics that will get your readers talking to each other—but consider whether a controversial
topic might turn into an unwanted flame war, or reflect badly on your site or brand.

As of this writing, Facebook seems to be the place where conversation starters work best.
Short questions, sometimes with an accompanying link or photo, evoke answers from
followers who read your updates in their news feeds, and Facebook is especially good at
encouraging quick answers. (So is Twitter.)

Some blogs seem conducive to long conversations in the comments; others don’t, perhaps
because their readers haven’t established a tradition of extensive commenting. But those
blogs that do have an active readership may pose a question to those readers at the end of
a post—and readers respond.

Examples

Whole Foods and REI are two brands that use Facebook to initiate conversations with
the public. Food and the outdoors are topics that many people find inspirational; the par-
ticipants in the conversations shown in Figures 9-13 and 9-14 are probably responding
to that more than to the brand itself. In the Whole Foods example, people happily share
information that other readers find valuable.

412  Chapter 9:  Using Social Media

Figure 9-13. One of Whole Foods’ conversation starters

Figure 9-14. REI’s conversation starters

The Patterns  413 

Blogs such as Boing Boing have very talkative readers. In Figure 9-15, one of the bloggers
poses an open-ended question to the readership.

Figure 9-15. Boing Boing’s conversation starter

Inverted Nano-pyramid

Figure 9-16. Short but informative tweet

What

Write short, dense status updates and headlines. The first few words are most important;
they should catch the interest of the right readers, and transmit the most information.

Use when

You post updates to Twitter, Facebook, or other microblogging channels, or you write
headlines for blog posts and articles.

Why

People skim updates and headlines quickly, to determine what’s worth their attention.
Take full advantage of the small amount of space and time you have.

Long tweets, status updates, and so on can’t be quoted or retweeted as effectively as short
ones. You want followers to repost your updates and get your name out there in front of
more people.

414  Chapter 9:  Using Social Media

How

Traditionally, print journalists have used the “inverted pyramid” for news reporting. The
most important information is front-loaded into the first sentence and paragraph of a
story. Secondary information comes next, and so on until the least important informa-
tion ends up at the bottom. Since many readers won’t go any farther than the first few
sentences, you should give them the essence of the story right at the beginning.

Twitter’s ruthlessly low character limit forced us to learn how to write in a very short
format. Every word counts; every character counts. So use the pyramid form—the most
important points in front—but shrink your messages down to the size of a tweet or status
update! Here are some ways to write them well:

•	 Choose words that accurately represent the topic and scope of what you’re talking about.
Use words that are specific, not general; make each word carry its weight. To help focus
your thinking, consider whether people will understand you if your tweet or headline is
taken completely out of context (as though it were a search result, for instance).

•	 Strip out words that don’t carry their weight, especially linking words such as the and
have, but don’t be so cryptic that you can’t be understood.

•	 Use abbreviations sparingly; don’t sound like a text message written by a 10-year-old.

•	 Make one single point. If you need to make two points or describe two links, use two
tweets or status messages.

•	 If you use a long word, try to find a shorter substitute. But if the longer word has
character and specificity, you might choose to keep it to draw attention.

•	 For phrasing, consider using one of the eight types of headlines described in Robert
Bly’s The Copywriter’s Handbook (Holt Paperbacks). These are: direct, indirect,
news, how-to, question, command, reason why, and testimonial. For a good online
summary of these types, with examples, see Copyblogger’s summary at http://www.
copyblogger.com/how-to-write-headlines-that-work/.

•	 Be patient as you write. Short content requires more thought and iteration than you
might expect.

Examples

The tweets shown in Figure 9-17 tell ultra-short stories. You can’t help but read them.

The Patterns  415 

Figure 9-17. Ultra-short stories

The news headlines shown in Figure 9-18 were designed to tempt readers to click through
the link.

Figure 9-18. News headlines designed to tempt readers to click through the link

As shown in Figure 9-19, the American Red Cross uses Facebook status messages and
links to both convey information and persuade the reader to learn more (links not shown).

Figure 9-19. The American Red Cross’s Facebook status messages and links

416  Chapter 9:  Using Social Media

Timing Strategy

Figure 9-20. Possible social media timing for an organization

What

Pace your social media posts according to the expectations of the channels you use; some
channels require more frequent posts, some less. Cross-post the best pieces, and consider
when in the day or week you make your posts.

Use when

Anyone who uses social media should develop and follow a Timing Strategy.

Why

Overusing a social media channel can overwhelm your followers with too much chatter.
Followers may drop you, or form a negative impression of your organization. Don’t irritate
people.

On the other hand, underusing a channel is an opportunity cost: you won’t have your
name in front of followers as often as you could.

Users of Twitter and Facebook in particular have expectations about how often they hear
from nonfriend entities (such as company pages) in their personal news stream. The
mechanisms of the channels themselves dictate some of this; tweets are shorter and more
rapidly consumed than Facebook updates, for instance. These expectations may change
as the technologies mature and shift.

The Patterns  417 

How

The most important thing is to understand users’ expectations about these channels. If
you post too frequently, your updates clutter followers’ personal news streams to the point
of being annoying, and they may unsubscribe from you.

However, the advice here is only a starting point. You should watch the numbers of fol-
lowers change as you use social media, listen to followers’ feedback, and be willing to
adjust your timing strategy on the fly if followers leave.

As of this writing, here are some of the posting frequencies that I have observed.

Facebook pages tend to be updated only once per day, or less. Most of the successful and
active pages I studied had a post rate of roughly once every two days, though some had
two per day (such as Wired) and others had much fewer. Exceptions are sometimes made for
time-sensitive events, concentrated outreach efforts, and crises such as major earthquakes—
followers will tolerate short bursts of frequent posting if the cause is worthy. Your mileage
may vary.

Twitter posts can be much more frequent than Facebook updates. The organizations I
studied posted between three and 15 tweets per day, on average. Also, these posts were
usually made between noon and 8:00 p.m. Eastern Standard Time, with a lower rate on
weekends. This is important because tweets should go out when the most people are on-
line and listening—Twitter users (unlike Facebook users) tend not to scroll back through
time to find interesting material. Note that many tweets from some organizations are
direct replies to individuals; those can run up the count quickly.

For organizations that use multiple social media channels, blog posts range between 0.5
and 2.5 posts per day. This is where long-form writing takes place: essays, stories, in-
terviews, and other content longer than one or two sentences. Sometimes these blogs
“feed” the Facebook and Twitter efforts—selected blog entries (usually not all of them)
are reposted as links in these other media, along with a one-sentence description. Lively
conversations about the blog posts are more likely to take place on Facebook or Twitter
than on the blog itself.

Email should be infrequent. If you send email more than once every few days, you may get
labeled as spam by some of your followers.

I found no evidence of timing strategies for media repositories such as Flickr and YouTube.
This is probably because they don’t normally “push” content out into followers’ personal
news streams, as others do.

418  Chapter 9:  Using Social Media

Examples

The chart in Figure 9-21 shows the timing strategies for several companies and organiza-
tions that have strong social media presences. The data was collected over two months at
the very beginning of 2010, in January and February. The numbers represent the average
number of posts per day on each of three social media channels: Twitter, Facebook, and
the organization’s main blog. (Not all of these sites had a main blog.) Clearly, the Twitter
numbers are higher than the others, reflecting its more ephemeral nature.

The last two companies, the American Red Cross and Partners in Health, are charities.
Over the time period that I collected data, these two organizations were conducting inten-
sive news and fundraising efforts related to the Haiti earthquake. Their usage of Facebook
skyrocketed in January, and then faded back to something more normal in February; this
shows up in the averages as slightly elevated Facebook numbers.

0

Dell
Whole Fo

ods
Coca-Co

la
Red Bull

Sta
rbucks REI

Volks
wagen

America
n Red Cross

Partn
ers i

n Health

2

4

6

8

10

12

Twitter

Facebook

Blog

14

16

Dell
Whole Foods
Coca-Cola
Red Bull
Starbucks
REI
Volkswagen
American Red Cross
Partners in Health

3
Twitter

14
10.5
5.3
10
3
2
3

2.7

0.3
Facebook

1
0.5
0.5
0.2
1

0.5
1.3
2.5

0.6
Blog

1.4
0.6

0.6

1
2.4

Figure 9-21. Actual post rates for nine sites

The Patterns  419 

Specialized Streams

Figure 9-22. Wired blogs, specialized by topic

What

Divide your content stream into many different channels, each with a different readership
and different “feel.” Use multiple Twitter identities, Facebook pages, blogs, and so on to
steer these items to the right audiences.

Use when

Your organization generates a large number of status updates, news articles, blog posts, or
other items that are socially distributed. You can categorize them easily by subject or some
other factor (such as frequency or author). You have a large readership, but many readers
are only interested in one or two of these categories, not all of them.

420  Chapter 9:  Using Social Media

Why

If you dump all of your organization’s updates into one huge stream, that stream might
overwhelm its followers. For instance, a Facebook page shouldn’t be updated many times
per day, lest its readers unsubscribe because of too many updates.

With several discrete streams or pages to follow, people can easily pick and choose among
the topics you offer, thus tailoring their own experience.

How

Categorize your updates according to your followers’ needs. Consider the following ways
to segment a readership, and see if any of them can work for you. (Not all will be suitable
for your organization, of course.)

By product
Do you sell different products to different types of customers, for instance? What
are the common needs and perspectives of a product’s users? For example, users of
smartphones will have one set of needs; users of desktop systems, quite another.

By topic
If you publish a lot of news articles or opinion pieces, how do you segment your mar-
ket according to subject?

By professional role
See the Google example in Figure 9-25; some of its blogs are aimed at a general audi-
ence, some at managers, and some at developers.

By social media usage style
How often do your followers read their news stream? Some people practically live on
Twitter; they may have a high tolerance for chatter. Other people will only want occa-
sional updates, and those updates had better be worth reading. CNN has several news
feeds that operate with different Timing Strategies to serve these different markets; see
the example in Figure 9-23.

Within the social media services that you’ve chosen to use, create different channels or
streams. Each should be labeled clearly with your organization’s name and logo, and visu-
ally branded appropriately—there should be no question that this stream is an official part
of the organization’s social media strategy.

Direct people to those streams at the right points. Put links to them on your front page, or
from your main presence on the social media services. For instance, if your organization
has a main Facebook page, link to the Specialized Streams from that page. If you spend ef-
fort to build them, you might as well tell people about them.

Consider using selected content from the Specialized Streams—not all of it, of course—in
your main blog, Facebook page, or Twitter feed. Reference the Specialized Stream from that
content so that interested readers can find it and subscribe.

The Patterns  421 

Examples

Updates are CNN’s business, and it generates a lot of them. CNN has a main Twitter feed that
it updates every few hours with general-interest news stories, but as of this writing, “cnnbrk”
(for breaking news) has almost three times as many followers. “cnnireport” is CNN’s third
main Twitter stream, and the CNN site directs readers toward all three. However, for the
skilled and motivated Twitter user, there are even more streams to be found! Entertainment,
weather, technology, money, international news, and other topics all have their own special-
ized CNN Twitter feeds, though they’re not easy to find. Figure 9-23 shows some of CNN’s
Twitter feeds.

Figure 9-23. Some of CNN’s Twitter feeds

Likewise, Wired divides its numerous updates into Twitter feeds that are specialized by
topic. Many of these primarily tweet links to posts in Wired’s corresponding blogs—see
Figure 9-22, which shows some of those blogs. One nice thing Wired does is post a long
list of specialized Twitter feeds in its background image, as shown in Figure 9-24. (Even
though they’re not clickable links, they still convey information.)

422  Chapter 9:  Using Social Media

Figure 9-24. Wired’s main Twitter feed, with Specialized Streams listed in the lefthand margin

Google has built many products, each of which has its own constituency (casual readers,
developers, domain experts, etc.). It also serves many regions of the world, and evokes in-
terest worldwide in many aspects of its operation. Google therefore sends out its updates
via a diverse set of corporate blogs (see Figure 9-25). Its main blog publishes general-
interest stories, but it sometimes runs entries that are cross-posted from a more specific
blog.

Figure 9-25. Some of Google’s blogs

Microsoft has a vast number of social content streams on Facebook, Twitter, YouTube,
Flickr, MySpace, Delicious, forums, and blogs. Some are listed in Figure 9-26. They
are aimed at customers for particular products, in particular roles; some are very spe-
cialized, and some are general with very large audiences. (Credit for this table goes to
EngagementDB, at http://www.engagementdb.com/Company/77.)

The Patterns  423 

Figure 9-26. A partial profile of Microsoft’s social presence

Social Links

Figure 9-27. Ten ways to follow Huffington Post

424  Chapter 9:  Using Social Media

What

On your site’s home page, put a group of links to your social media presences.

Use when

You are putting effort into supporting one or more social media channels—blogs,
Facebook, Twitter, Delicious, and so on—and you want to drive people toward those
channels. If they’re self-contained services, like Facebook, you don’t mind visitors going
to those sites instead of remaining on your own site.

Why

If you’re already investing in various social media channels, you might as well tell people
about them. Visitors to your home page may find those links quite useful, especially if
they’re specifically looking for your social media presence.

Widgets that let visitors follow you give them a convenient way to put your updates into
their personal news stream. That’s valuable to you and to them, and it shows visitors that
you are wise to the latest social technologies.

How

Create a small area containing well-labeled links to social media sites and public reposito-
ries: Facebook, Twitter, YouTube, Flickr, Delicious, your blog, and so on. RSS feeds often
are found here, too. Some sites put their email sign-ups into this section.

Brand icons will stand out more than ordinary links—you may want this for ease of find-
ability. They are out of place in some designs, however, and simple text links in a “written
invitation” may be refreshing. See the upcoming Slate, Whole Foods, and Copyblogger
examples.

A disadvantage of a Social Links section is that it may send your visitors to a different site,
and they might stay there instead of continuing to peruse your own site. Social network
sites, especially, have a long “dwell time”—once someone goes there, she tends to stay for
a while and not come back. (Many news-based sites with strong social presences, such
as CNN and Wired, do not have Social Links on their home page.) One way to avoid this
problem is to change the links in the Social Links section into buttons. A Facebook but-
ton may bring up a widget to make the user a fan, for instance, rather than taking him to
Facebook itself.

The Patterns  425 

Some sites have more than one Twitter stream or Facebook page to reflect different as-
pects of their organization; see the Specialized Streams pattern for more discussion. Those
streams may show up here. The Vancouver Olympics example in Figure 9-28 shows one
way to handle this.

Consider adding “hooks” to pique the viewer’s interest. For instance, Copyblogger uses
its Social Link widget to tell the viewer that 48,206 people follow them on Twitter. That’s
brilliant—it’s appealingly specific, it uses gentle peer pressure to convince you to follow
them, and it puts a smile on your face. Similarly, Mashable shows how many people all to-
gether are following them, aggregated over several services (Twitter, Facebook, RSS, etc.).

Examples

Figure 9-28 shows the Social Links widgets on various home pages.

Figure 9-28. The Social Links widgets on the home pages of (counterclockwise from upper left) Mashable,
the American Red Cross, the Vancouver Olympics, Levi’s, Whole Foods, Copyblogger, and Slate

In the examples shown in Figure 9-29, Microsoft and Ford use the greater space available
on their sites’ inner pages. They show clickable samples of the latest social activity at each
service they list. These live examples may make the social presences more alluring for
people who are interested in the topic. (The disadvantage of such a treatment, of course,
is the amount of space it consumes.)

426  Chapter 9:  Using Social Media

Figure 9-29. A Microsoft Windows–related product page and one of Ford’s press release pages

Sharing Widget

Figure 9-30. Slate’s end-of-article sharing widget

What

Beside your articles, videos, and other pieces of content, place a set of controls that let
viewers easily share that content with their own close ties and social followers. These often
link to social media sites such as Facebook and Twitter.

The Patterns  427 

Use when

Sharing Widgets are used almost everywhere now. If you post original content of any kind,
you would do well to have one of these, even if it’s rudimentary.

Why

It’s convenient for viewers who may really want to share this cool piece you wrote. It helps
them do Repost and Comment, which supports their own social reputation.

Your viewers will then disseminate your content for you through their own social con-
tacts. An article recommended by a personal contact—especially a close tie, such as a
family member or close friend—is more likely to be read than an article found randomly
on the Web. See the Personal Recommendations pattern in Chapter 1.

Some sharing tools let you track what gets shared, thus giving you data about which of
your posts get disseminated broadly. You can then use that data for your own analysis and
to display Content Leaderboards for the most-shared items.

How

You can build your own Sharing Widget, or you can use a third-party site such as ShareThis
to construct one. Populate it with the sharing channels that you think will be most used by
your followers, but don’t clutter it up with too many items. (At least find numbers on the
relative popularity of social networking sites and bookmarking sites; you should always
include the biggest ones. Facebook and email had the highest usage as of this writing,
while Twitter was lower but rising rapidly.)

You might consider putting the following services on your Sharing Widget:

•	 Social networking sites such as Facebook and MySpace

•	 Microblogging mechanisms such as Twitter

•	 Public bookmarking sites such as Digg or Delicious

•	 Email, which is still preferred by many Internet users

•	 Sharing via an SMS message

•	 Other, nonsharing tools, such as printing, commenting, or thumbs-up/down

If you have space, you may also show counters for each sharing service: how many people
have shared a particular piece of content via this channel? This gives readers an immedi-
ate sense of how “hot” this content is. (If the numbers are consistently low, you may not
want to show them.)

Place the Sharing Widget very close to the content to be shared. The top and bottom of an
article are traditional places to put this, and some articles place it as an inset within the ar-
ticle (with the text flowing around it). You’re trying to keep the widget within the gaze of

428  Chapter 9:  Using Social Media

someone reading the content. Also, before you put the Sharing Widget into a drop-down
or anchored toolbar, think about accessibility—how will someone using a screen reader
use this? And what about people who don’t have good mouse control? They may have an
easier time with an area directly on the page.

If you offer a Facebook sharing control, make sure your HTML page is structured correct-
ly for Facebook’s linking tools to present it well. Verify that Facebook picks up the title,
summary, and thumbnail correctly. (Check other social sharing mechanisms as well.)

Examples

Many sites create multiple Sharing Widgets for different contexts, as shown in Figure 9-31.
A widget containing the top three services might appear near the top of the content, for
instance, while a more complete widget might appear at the end. This complicates the
design, but it might work well if you have a lot of services to show and not much space at
the top.

Figure 9-31. Sharing widgets from Wired, Boing Boing, Technorati, and Pandora

Pop ups and drop downs to show the “long tail” of social services are a common way
to implement progressive disclosure—the user doesn’t see the numerous other sharing
services until she clicks on a button—but again, these hide functionality and are not as
accessible as items shown directly on the page.

Mashable, shown in Figure 9-32, uses three different strategies: a small Sharing Widget be-
side a news snippet on the front page, a slightly expanded widget on the page containing
the article (it now has an Email feature and a Share button), and a pop up shown when the
reader clicks the Share button.

The Patterns  429 

Figure 9-32. Mashable’s Sharing Widgets

In other libraries

http://www.designingsocialinterfaces.com/patterns/Share_This

http://www.designingsocialinterfaces.com/patterns/Share_This

430  Chapter 9:  Using Social Media

News Box

Figure 9-33. American Red Cross News Box

What

On your site’s front page, show your latest news items, blog posts, videos, and other time-
sensitive content. Each item should attract the viewer with readable headlines, summa-
ries, links to read more, and possibly thumbnail images.

Use when

Your organization regularly produces news items, original content about topics that are
interesting to your site’s visitors, or “social objects” that gather comments and discussions.
You want to encourage visitors to read those items.

Why

A News Box gives your visitors content that can hold their attention. Without it, a visitor
may come to your site, glance briefly at it, see nothing interesting, and leave without lin-
gering. With it, they may stay for a while and learn about your organization.

It’s also informative. Visitors to your site may come with the intent of finding out about
recent news or events, so give it to them.

The Patterns  431 

Your website will get updated with new content on a regular basis. It’s considered a best
practice to regularly refresh the content on a front page. Visitors can see that things are
happening here—your site is not a ghost town, and they may even want to come back later
to see what else happens.

Once a visitor clicks on a news link, the “jump page” can have all kinds of other features:
links to related stories, other blog posts, a Sharing Widget, reader comments, and other
things you don’t have room for on the front page. All of these draw visitors in and keep
them on your site, learning more and engaging more.

The topics, words, and images you choose to display in a News Box all contribute to a first
impression of your organization. A visitor will indirectly learn about your organization
from the scope of the topics covered, the tone of voice used in the text, and other signals.

How

Place the News Box on your home page; it doesn’t have to be above the fold (though many
sites put it there when they don’t need the whole home page to explain the site’s value
proposition). Make the News Box large enough to contain a handful of news items, each
of which has a generous amount of space—at least several lines of text. You may wish to
divide the News Box into subsections for different sources or media types (such as photos
or videos). Some sites create a subsection to show additional, smaller items—usually just
linked headlines—in addition to the larger links to featured articles.

Each item should have:

•	 A headline, which is also a link to the main article.

•	 A short description that “sells” the article to the reader.

•	 A “more” link to the main article. This should look like a link, with underlining,
chevrons, color, or other obvious visual cues.

They may optionally have:

•	 A thumbnail image. The most attractive News Boxes generally have these.

•	 The date on which the content was released.

•	 The source of the item—blog, news page, press release, YouTube, and so on. If your
link sends viewers to a different site, it’s polite to tell them so.

•	 A Sharing Widget and a link to reader comments. These are more commonly found on
the destination page, where the whole article can be read.

Every word counts in these headlines and summaries. Use the Inverted Nano-pyramid pat-
tern to write the headlines, and eliminate all extraneous information (such as bylines or
locations) in the summaries. If you can, have someone custom-write the summaries; don’t
use the first line of the article. The tone and voice you use in these pieces of text help de-
fine your organization, so make sure they reflect its values accurately: informal, authorita-
tive, humorous, youthful, silly, ironic, and so on.

432  Chapter 9:  Using Social Media

If you’re pulling content from media repositories such as Flickr, they might have widgets
you can install directly on your page. Make sure they don’t cause your home page to slow
down or break.

Examples

Red Bull sponsors athletes in many different sports. Though its product is a drink, its
News Box is full of news items about the athletes and events, as shown in Figure 9-34. The
overall impression of the pictures and words is one of action and speed. Notice the rhythm
of the layout, the brief but effective writing, and the clarity of links to articles and videos.

Figure 9-34. Red Bull’s News Box

Whole Foods seeks a very different audience and emotional “feel,” but its News Box is simi-
lar to Red Bull’s in its clarity and rhythm (see Figure 9-35).

The Patterns  433 

Figure 9-35. Whole Foods’ News Box

Ford’s News Box contains items of varied size and emphasis (see Figure 9-36). The visual
hierarchy clearly shows which articles Ford wants you to see first; the large images and
text attract your eyes upward and left first, but the smaller size of the “Latest Headlines”
heading allows more of them to be packed into the available space.

Figure 9-36. Ford’s News Box

434  Chapter 9:  Using Social Media

But make sure you don’t make your headlines and summaries too short or cryptic. The
news items in the Sierra Club’s News Box don’t explain themselves well enough to entice
someone to click through (see Figure 9-37).

Figure 9-37. The Sierra Club’s News Box

Content Leaderboard

Figure 9-38. From the Wall Street Journal

What

Show a list of the most popular articles, blog posts, videos, or other content pieces. Use
social media-based metrics such as most shared, most emailed, and most blogged.

The Patterns  435 

Use when

Your site generates a large amount of content, authored either by your organization or by
other participants. You may already have an organizing principle for all that content (e.g.,
News Stream; see Chapter 2), but you also want readers to see what other readers found
interesting. You have enough readers and sharers so that clear leaders can emerge among
the content you publish.

Why

This is a way of crowdsourcing a “top 10 list” for your site. Metrics for sharing and emailing
show what a readership likes—or at least what those readers think their own followers will
like. If the readers have excellent taste, they’ll pull the best-quality pieces from your content;
if not, they’ll at least find the wackiest or most dramatic ones. (You may not agree with their
taste!) Either way, your other readers are likely to be interested in the same kinds of things.

How

Gather data about which items have been shared, emailed, and so forth. If you haven’t
already, make sure a Sharing Widget of some kind is shown beside each piece of content so
that readers can easily share things in the first place.

Show a list of the most popular items for that day (or week, if the pace of your site is
slower). The items in the list should be links to the original posts. Sites that track multiple
such lists—emailed, blogged, and so on—often put them together into Module Tabs (see
Chapter 4).

Content Leaderboards are usually displayed as small sidebars on the home page and in-
ternal pages. Most sites primarily present content according to some other priority, such
as freshness or editorial choice; leaderboards don’t usually belong in Center Stage (see
Chapter 4).

Examples

The New York Times has an archetypical Content Leaderboard that you’ve probably seen
(see Figure 9-39). It contains four leaderboards tabbed together, one of which shows
search terms and not articles. When you read an article in a particular section such as
Business the leaderboard changes to show the most popular articles in that section.

Engadget uses an eye-catching leaderboard, shown in Figure 9-40, to display the most
heavily commented posts. Compare this very bright display to the more neutral content
leaderboards in Figure 9-41. Note also the different tab names, which reflect the differ-
ent criteria these sites use to determine the “hottest” articles—though we can’t tell what
criterion Mashable (at the top right) uses.

436  Chapter 9:  Using Social Media

Figure 9-39. Content leaderboards on the New York Times’ website

Figure 9-40. Engadget

The Patterns  437 

Figure 9-41. Content leaderboards from Technology Review, Mashable (top right), and Wired (bottom)

438  Chapter 9:  Using Social Media

Recent Chatter

Figure 9-42. Recent Chatter on two blogs: Boing Boing and Kitchen Table Math

What

Show the latest reader comments, tweets, contributions, or other community activity in
a sidebar.

Use when

You want to explicitly encourage participation—it’s fine if people read your pieces or fol-
low you, but you want them to actually take that next step and contribute.

You have a lot of social activity going on around the content you publish, and the com-
ments are of a high enough quality that you’re comfortable showing snippets of them on
your home page.

The Patterns  439 

Why

Readers know that your site is not a “ghost town.” They can see that there are other people
here, actively taking part in conversations. This appeals to people, and may encourage
them to contribute their own thoughts.

Readers can be drawn into conversations if they’re shown snippets of dialog—they may
want to respond to a particular comment, for instance.

How

Create a widget that shows a list of the latest activities in reverse chronological order. It
doesn’t need to be placed above the fold; often these are in an inconspicuous place on the
home page (or internal page).

Decide which social activities you want to show. Comments are probably the most com-
mon thing to show, and they’re interesting to other readers; so are tweets on a certain
topic. You could also display favoriting or voting activities (such as Vote to Promote in
the Yahoo! pattern library), or sharing, but make sure these don’t swamp the comments,
which are more appealing.

In the list of recent chatter, show these pieces of information:

•	 What the activity was, and a snippet of it if appropriate

•	 The name of the reader who initiated this activity

•	 The title of the affected content, and a link to it

•	 Possibly a timestamp or relative time (e.g., “10 minutes ago”)

Some blog software, including Blogger and WordPress, makes this very easy to do. There’s
almost no cost to it, other than the screen space that a Recent Chatter area takes up.

Examples

As you can see in Figure 9-43, some sites feature different types of public contributions.
Yelp shows reviews (“Fresh Lists”) and over-the-fence chatter in two different sections.
MyStarbucksIdea shows the latest ideas posted by readers, but with titles only. Technology
Review is a more traditional news site, and its Recent Chatter section is more understated
than the blogs shown in Figure 9-42. Note that without direct quotes, MyStarbucksIdea
and Technology Review have a less personal, more formal feel than Yelp or the blog ex-
amples shown in Figure 9-42. (This may be exactly what you want, of course.)

Yahoo! News, shown in Figure 9-44, updates its Recent Chatter widget whenever someone
“buzzes up” an article, which happens very, very frequently. It certainly shows activity, but
because you don’t see people’s actual words, it isn’t nearly as engaging.

Figure 9-43. Recent Chatter at Yelp, MyStarbucksIdea, and Technology Review

Figure 9-44. Buzzing up at Yahoo! News

Chapter 10

Going Mobile

If you have ever designed anything for the Web, you are already a mobile designer.
Congratulations!

That’s the reality of a world full of iPhones, other kinds of smartphones, ebook readers,
tablet computers, and entire countries where people reach the Internet primarily through
their phones. All these users will see your sites through browsers that are small, slow,
quirky, and hard to interact with. They will use your sites in environmental conditions—
and mindsets—that are entirely different from what they would experience if they were
sitting quietly at a comfortable desk, in front of a large screen.

Even if you don’t choose to become an expert at mobile design, you can still treat mobile
design consciously and thoughtfully. A relatively small investment of knowledge, design
work, and time can go a long way toward improving the mobile experience of the sites
you design.

For many sites, it will make sense for you to create a separate version of the site aimed
at mobile users (or, at least, users of small screens). You would present a scaled-down,
focused version of your site that answers the needs of users who are out moving around.
In this chapter, we won’t go into the technical details of platform detection and how to
present the correct design for the user’s situation (e.g., different CSS stylesheets)—but the
knowledge is out there and fairly easy to find.

Other sites will want to supply all of their functionality via the mobile site, but all of it
would be tailored to the small screen and other mobile constraints. Again, many people
view the Internet exclusively through their mobile device, and they’ll want all your site’s
features. You may choose to do two separate and parallel designs, one for mobile and one
for the desktop.

442  Chapter 10:  Going Mobile

If you create tools and applications for large screens, instead of websites, this chapter may
not apply to you at all. You and your organization may wish to evaluate whether your tools
(or some subset thereof) could be re-created as apps on mobile devices and still be useful.
Know your users—understand their needs, tasks, and contexts of use. Creating mobile
apps is a nontrivial investment, but it may be worth it for you.

The Challenges of Mobile Design
When you design for a mobile platform, you face challenges that you don’t encounter when
your user can be presumed to be sitting quietly in front of a large screen and keyboard.

Tiny screen sizes
Mobile devices just don’t offer much space to present information or choices. Sadly,
you don’t have the luxury of sidebars, long header menus, big images that don’t do
anything, or long lists of links. You need to strip your design down to its essence—
take away all the extra stuff you can. Leave the most important functions on the front
page and either discard the rest or bury them deeper in the site.

Variable screen widths
It’s hard to make a design that works well on three different screens that are 128 pixels
wide, 320 pixels wide, and 600+ pixels wide—and there might be some in between,
too. Scrolling down a mobile page isn’t terribly onerous (which is why width gets spe-
cial mention, not height), but a design needs to use the available screen width intel-
ligently. Some sites end up creating different versions—with different logo graphics,
different navigation options, and so on—for the smallest keypad devices, and another
for the iPhone-size class of touch devices (around 320 pixels wide).

For an excellent discussion of design and technical issues related to screen width, see
the following mobiForge article. A search for more recent articles may help you as well.

http://mobiforge.com/designing/story/effective-design-multiple-screen-sizes

Touch screens
As of this writing, most mobile web access comes from devices with touch screens.
Keypad devices obviously should be served too, since they constitute the majority of
existing mobile devices, but you may want to bias the design toward the touch screen
experience. Links on keypad devices can be navigated with keys fairly easily, as long as
you follow good overall design principles (restricted content, linearized layout, etc.).

It’s hard to touch small targets accurately with fingers. Make your links and buttons
large enough to hit easily; at a minimum, make important hit targets at least 1 cm
on each side, and put some space between them. This reduces the available space for
other content, of course.

The Challenges of Mobile Design  443 

Difficulty of typing text
No one likes typing text on a touch screen or keypad. You should design interaction
paths through your site or tool in such a way that typing is unnecessary or very lim-
ited. Use Autocompletion (Chapter 8) in text fields whenever possible, for instance,
and prefill form fields whenever you can do so reliably. Remember that numbers are
much easier than text in some contexts, however.

Challenging physical environments
People use their phones and other devices in all kinds of places: outside in the bright
sun, in dark theaters, in conference rooms, cars, buses, trains, planes, stores, bath-
rooms, and in bed. Think about the ambient light differences, to begin with—tasteful
gray text on a gray background may not work so well in direct sun. Think also about
ambient noise differences: assume that some users won’t hear the device at all, and
that others might find sudden noises jarring and inappropriate.

Finally, think about motion. Tiny text is hard to read when the device (or the user)
is moving around. And a tiny hit target on a touch screen device will be hard to
use under the best of circumstances, but it can be nearly impossible on a rocking
and jolting bus! Again, design for “fat fingers,” and design so that mistakes are easily
corrected.

Social influences and limited attention
Most of the time, mobile users won’t spend lots of time and attention on your site
or app. They’ll be looking at your design while doing other things—walking, riding
in a vehicle, talking with other people, sitting in a meeting, or (God forbid) driving.
Occasionally a mobile user will focus his full attention on the device, such as when
playing a game, but he won’t do it as often as someone sitting at a keyboard will.
Therefore, design for distracted users: make the task sequences easy, quick, and reen-
trant. And make everything self-explanatory.

Another assumption you can make is that lots of mobile users will be engaging in
conversations or other social situations. They may pass around the device to show
people something on-screen. They may have people looking over their shoulder.
They may need to suddenly turn off the sound if it’s not socially acceptable to have a
noisy device—or they may turn it up to let others hear something. Does your design
behave well in these situations? Can it support graceful social interaction?

How to Approach a Mobile Design
In his book Mobile Design and Development (O’Reilly, http://oreilly.com/catalog/
9780596155452/), Brian Fling tells a difficult truth: “Great mobile products are created,
never ported. Start by understanding your users and the benefits the medium has to offer.”

If you’re simply trying to take a site’s usual content and cram it into a 320 × 480 window,
stop. Take a big step back and look at the whole picture.

444  Chapter 10:  Going Mobile

1. What do users in a mobile context actually need?
A person who is out and about with a mobile device may only want to use your site (or
app) in particular ways; she won’t have the same range of needs that a user of the full site
will have. Design for use contexts such as these:

•	 “I need to know this fact right now, quickly.”

•	 “I have a few minutes to spare, so entertain me.” (See the Microbreaks pattern in
Chapter 1.)

•	 “Connect me socially.”

•	 “If there’s something I need to know right now, tell me.”

•	 “What’s relevant to the place I’m in right now?”

2. Strip the site or app down to its essence
Don’t be afraid to take away all that other stuff—the extra content, eye-catching features,
sidebars, pull quotes, ads, images, site maps, social links, and so on. Focus tightly on the
few tasks that mobile users will need from your site, use minimal branding, and chuck
the rest.

In fact, make sure that even on the home page (for a website) or the first working page of
an app, relevant content appears high on the screen. That means getting rid of the “layer
cake effect” of logos, ads, tabs, and headers that stack up on the screen. See Figure 10-1
for a poor example; the only piece of content that a user really cares about is the score at
the bottom of the screen! (If the user rotated the phone sideways, the score wouldn’t even
be visible above the fold.)

Figure 10-1. NBA.com, where the only information the user cares about is at the bottom

The Challenges of Mobile Design  445 

Having reduced the site to its minimal form, you should then make sure that a user who
really needs the full nonmobile site can get it. Put a link to the full site in an obvious place.
Remember that many of the world’s people can get web access only through their phones,
so you can’t count on them just going to the full site on their large screen—they may not
have one.

Alternatively, you might create the two “separate and parallel” designs mentioned earlier,
in which all the site’s functions and information are presented in the mobile site (mean-
ing the user never has to go to the full nonmobile site). You may still need to strip down
the home page or main screen. Instead of having a flat and broad navigational hierarchy
in which the home page has a zillion links directly to other pages, you may need to reor-
ganize the site so that the hierarchy is somewhat narrower and deeper. This lets you put
fewer options on the home page, which means less clutter on a small screen. (Of course,
you’ll have to balance that against the time it takes for a user to jump from page to page!)

3. If you can, use the device’s hardware
Mobile devices offer wonderful features that you don’t get on the desktop. Location, cam-
era, voice integration, gestural input, haptic feedback such as bumps and vibrations, and
other features may be available to you. Some devices multitask so that your app can be
running in the background while the user is doing other things; can you use that?

4. Linearize your content
This goes back to the width problem. Many devices simply don’t give you enough pixels
in the width dimension to do any interesting side-by-side layouts. Instead of forcing the
issue, just accept that one way or another, your content will end up being laid out verti-
cally. Order the mobile site’s content so that it “reads well” when laid out this way. See the
Vertical Stack pattern in this chapter.

(Several writers have pointed out that this linearization of content also makes the mobile
site’s content more accessible to screen readers and other types of devices. This is a non-
trivial point. Can your main site, in fact, be linearized this way? Does it make sense if you
read the content in its HTML order, with no CSS styling or layout?)

5. Optimize the most common interaction sequences
Once you’ve decided which tasks your typical mobile users will want to perform, and
you’ve narrowed down the site to only the most relevant content, try to make those tasks
as easy as possible by following these heuristics:

•	 Eliminate typing, or reduce it to as few characters as possible.

•	 Use as few page loads as possible, and don’t inflate pages with unnecessary bytes.
Download times can be very slow; most parts of the world are still outside the reach
of high-bandwidth wireless Internet facilities.

446  Chapter 10:  Going Mobile

•	 Reduce scrolling and sideways dragging, except where it eliminates page loads and
typing. In other words, prefer one long vertical page to many small pages if you have
to present a lot of content.

•	 Reduce the number of taps it takes a user to reach the desired information or ac-
complish a task. Tapping large hit targets—or using hardware buttons—is better than
typing by a long shot, but try to reduce them anyway.

For more information on mobile design guidelines and an analysis of mobile usability
tests done on various websites, see the Nielsen Norman Group’s study “Usability of Mobile
Websites,” at http://www.nngroup.com/reports/mobile.

Dan Saffer’s book Designing Gestural Interfaces (O’Reilly, http://oreilly.com/
catalog/9780596518394/) discusses the common gestures used in touch screens, among
other topics relevant to mobile devices.

Finally, the Design For Mobile pattern library, at http://patterns.design4mobile.com, con-
tains many good patterns in addition to those found in this book.

Some Worthy Examples
Here are some mobile versions of home pages that manage to meet most of the design
constraints listed in the preceding section, while retaining the branding and personality
of each site. Figure 10-2 shows examples of each.

JetBlue.com
If someone is accessing JetBlue’s website from a mobile device, it’s a really good bet
that he’s actually traveling on JetBlue that day! He may be trying to get information
about his flight, for instance. That’s exactly what the JetBlue mobile site offers. The
first items are the most useful to a traveler: flight information, check-in, and alerts,
with further options for booking flights and in-flight entertainment. The page is sim-
ple and linear, and the items are easy to read and tap.

RuthsChris.com
Mobile users who go to restaurant sites probably want to see locations, peruse menus,
or make a reservation. This simple site does those tasks with style. (The site would be
even better if the device’s browser knew the current location so that the user could tell
the site to “find the restaurants closest to me.”)

Boston.com
This news site has a clean design and packs useful information into a small space: the
weather, the baseball score, leading headlines, and the first 20 or so words of each ar-
ticle. The site satisfies mobile users’ needs to fill up a minute here and a minute there
of “found time.” The entire area of each article summary can be tapped, making the
summaries easy to navigate.

http://www.nngroup.com/reports/mobile
http://patterns.design4mobile.com

The Challenges of Mobile Design  447 

Fidelity.com
People who watch the financial markets compulsively will find current data on the
three big U.S. market indexes at the top of the mobile page, plus a way to search for
specific quotes and navigation links into other timely topics (such as news, watch
lists, and personal portfolios). Useful information is surfaced right on the home page,
and a much deeper data set is easily available from the choices given.

Figure 10-2. Good examples of mobile sites: JetBlue, Ruth’s Chris, Boston.com, and Fidelity

448  Chapter 10:  Going Mobile

The Patterns
In the introduction, we talked about the need to structure content in a vertical column for
maximum flexibility. The Vertical Stack pattern goes into more detail.

1.	 Vertical Stack

A mobile application needs a way to show its top-level navigational structure. A persis-
tent toolbar across the top or bottom of each app page is one standard way to organize a
mobile interface; tabs and full-page menus are two other common ways. Less obvious, yet
worth mentioning, are the Filmstrip and Touch Tools patterns.

2.	 Filmstrip

3.	 Touch Tools

Mobile web pages often use the Bottom Navigation pattern for their global menus, prefer-
ring to use valuable top-of-page space for more immediately relevant content.

4.	 Bottom Navigation

Lists are everywhere in the mobile world—lists of apps, pictures, messages, contacts, ac-
tions, settings, everything! Both web pages and applications should present well-designed
lists that look good and are usable. Ordinary text lists are often adequate, and Carousels
and Thumbnail Grids work beautifully in mobile designs. (See Chapter 5 for those patterns
and more discussion of list design.) Consider using a Thumbnail-and-Text List as well, be-
cause they’re usually simpler than Carousels and Thumbnail Grids. Sometimes an Infinite List
suits the needs of mobile designs.

5.	 Thumbnail-and-Text List

6.	 Infinite List

The remaining patterns are a grab bag of topics related to mobile design.

7.	 Generous Borders

8.	 Text Clear Button

9.	 Loading Indicators

10.	 Richly Connected Apps

11.	 Streamlined Branding

The Patterns  449 

Vertical Stack

Figure 10-3. Google News vertical layout

What

Order the mobile page’s content in a vertical column, with little or no use of side-by-side
elements. Let text elements line-wrap, and let the page scroll down past the bottom of
most device screens.

Use when

Most mobile web pages that must work on devices of different sizes should use this pat-
tern, especially if they contain text-based content and forms. (Immersive content, such as
a full-screen video or game, won’t generally use this because it doesn’t usually scroll like
a text-based page does.)

When going from one page to another is expensive—as is the case with web pages, which
take time to download—this pattern is applicable. On the other hand, an app that resides
on the device can go from page to page almost instantly, since the content doesn’t have to
be downloaded. For these, it makes more sense to structure the content into single screen-
fuls so that the user never has to scroll vertically—she can just tap or swipe. But vertical
scrolling of a long page is preferable to interminable waits for downloads.

450  Chapter 10:  Going Mobile

Why

Devices come in different widths. You can’t always anticipate what the actual width in
pixels will be, unless you detect the screen width at runtime or build apps for particular
devices. (You can create optimized designs for single devices or standard device-specific
widths, but not everyone has the resources to do so.)

A fixed-width design that’s too big for the physical device can scroll sideways or be
zoomed, but these designs are never as usable as those that let the user simply scroll down.

Font sizes may also change unbeknownst to you, and as in the Liquid Layout pattern, a
Vertical Stack with line-wrapped text elements will adjust gracefully when this happens.

How

Lay out the page’s content in a scrolling vertical column. Put the most important items on
top and less important items farther down so that most users can see the important stuff.

Useful content—from the user’s perspective, that is—should show up in the first 100 pix-
els (or less) of this Vertical Stack. This top part of the screen is precious real estate. Don’t
waste it with too-tall logos, ads, or endless toolbars all stacked up into a “layer cake” that
pushes all the useful content off the bottom of the page! That annoys users to no end.

Put form labels above their controls, not next to them, to save horizontal space. You will
need all the space you can get to show text fields and choice controls with adequate width.

Put buttons side by side only if you’re really sure their total width will never be wider than
the visible screen. If the buttons contain long text that might be subject to localization or
font enlargements, forget it.

Thumbnail images can fit beside text fairly easily, and it’s common to do this in lists of
articles, contacts, books, and so on—see the Thumbnail-and-Text List pattern. Make sure
the design degrades well when the screen width is reduced to 128 pixels (or whatever the
realistic minimum happens to be when you create your design).

Examples

The sites for ESPN, the Washington Post, and REI (Figure 10-4) demonstrate three styles
of using a Vertical Stack. ESPN places only the most immediately relevant content on the
home page, preferring to put the rest behind menu items on the bottom of the page. The
Washington Post puts it all out there; the stack shown in the figure is just a small fragment
of the entire page! REI simply shows a menu of all the available places and ways to shop,
with no ads or teasers on its home page.

The Patterns  451 

Figure 10-4. Vertical Stacks on the mobile sites for ESPN, the Washington Post, and REI

452  Chapter 10:  Going Mobile

Filmstrip

Figure 10-5. iPhone Weather app

What

Arrange top-level pages side by side, and let the user swipe them back and forth to view
them one at a time.

Use when

You have pages of content that are conceptually parallel, such as the weather in different
cities or the scores in different sports. Users won’t mind swiping through these pages,
going through several before reaching the one they’re looking for, because they are all
potentially interesting.

This pattern can sometimes be a viable alternative to other navigation schemes for mobile
apps, such as toolbars, tabs, or full-page menus.

Why

Each item to be displayed can occupy the entire screen; no space needs to be used for tabs
or other navigation.

Since the user can’t jump straight to a desired screen—he has to swipe through others to
get there—this pattern encourages browsing and serendipity.

Swiping seems to be a very satisfying gesture for some users.

The Patterns  453 

A disadvantage of this pattern is that it doesn’t scale very well; you can’t use too many top-
level pages, or users might get irritated at having to swipe too many times to get to a de-
sired page. Another disadvantage is lack of transparency. A new user, just seeing your app
for the first time, cannot easily see that swiping is how he gets from one page to another.

How

Essentially, a Filmstrip is like a Carousel (see Chapter 5) for a mobile application’s main
pages. One difference is that a Carousel usually shows metadata—information about the
item or page—and context, such as fragments of the previous and next pages. Mobile apps
that use Filmstrips as a top-level organizing device don’t generally do that.

If you want to give the user a clue that multiple top-level pages exist, and that he can swipe
between them, use a dot indicator like the Weather app uses at the bottom of its screen.

Examples

The iPhone’s built-in Weather app (shown in Figure 10-5, at the top of the pattern) uses
a Filmstrip to show the weather in the various geographic locations that the user chooses.

Likewise, ESPN’s iPhone app structures its main pages as a Filmstrip. The user swipes back
and forth between football, baseball, basketball, and other sports scores (see Figure 10-6).

Figure 10-6. ESPN application

454  Chapter 10:  Going Mobile

Touch Tools

Figure 10-7. Touch tools on the iPhone photo viewer

What

Show tools only in response to a touch or key press, and put them in a small, dynamic
overlay atop the content.

Use when

You are designing an immersive or full-screen experience, such as videos, photos, games,
maps, or books. To manage that experience, the user will sometimes need controls—
navigation tools, media player tools, information about the content, and so forth. The
tools require significant space, but are only needed sometimes.

Why

The content is allowed to dominate the experience most of the time. The user isn’t dis-
tracted by controls taking space and attention away from the content. Remember that in a
mobile context, space and attention are even more precious resources than usual.

The user controls the experience by choosing when to show the tools.

The Patterns  455 

How

Show the unadorned content using the full screen. When the user touches the device’s
screen or presses a particular key or softkey, show the tools.

Many apps only show Touch Tools when the user touches a certain region of the screen.
This way, the user doesn’t accidentally bring up the tools just by ordinary handling of the
device. Also, you can bring up different tools when different regions of the screen are
touched—the Stanza book reader does this, for instance. See the example in Figure 10-9.

Show the tools in a small, translucent area that appears to float above the content. The
translucency makes the tools look ephemeral (which they are).

Remove the tools after a few seconds of nonuse, or immediately if the user taps the screen
outside the bounds of the tools. It can be annoying to wait for the tools to go away by
themselves.

Examples

The video player on the iPhone shows Touch Tools when the user taps the indicated area
of the screen (see Figure 10-8). They go away again after about five seconds of nonuse.

Figure 10-8. YouTube for iPhone Touch Tools

Stanza, one of the many ebook readers on smartphones and other touch screen devices,
also uses Touch Tools. Most of the time, the full screen is used to show book text. But when
the user taps the center of the screen, extra information and controls appear—book title,
author, chapter and page, settings, search, viewing mode, and a menu of yet more tools.
To explain this and the page-turning gestures, a first-time reader is shown an explanatory
dialog. See Figure 10-9.

456  Chapter 10:  Going Mobile

Figure 10-9. The Stanza book reader: default page, with Touch Tools, and an explanatory dialog

Bottom Navigation

Figure 10-10. Amazon’s Bottom Navigation

The Patterns  457 

What

Place global navigation at the bottom of the page, below the fold.

Use when

A mobile website needs to show some global navigation links, but these links represent
low-priority paths through the interface for many users.

Your highest priority on the site’s front page is to show fresh, interesting content.

Why

The top of a mobile home page is precious real estate. You should generally put only the
two or three most important navigation links there—if any at all—and devote the rest of
the front page to content that will interest most users.

A user looking for navigational links can easily scroll to the bottom of a page, even when
those links are far below the fold.

How

Create a set of vertically arranged menu items on the bottom of the page. Make them easy
to tap with a finger on touch screens—stretch them across the full width of the mobile
page, and make the text large and readable.

This pattern is closely related to the Sitemap Footer pattern in Chapter 3. In a mobile ap-
plication, you probably aren’t trying to fit an entire site map into the footer—you only
have room for a few well-chosen links. But the idea is similar: instead of taking up too
much top-of-page space for navigation, you can push it to the bottom of the page, where
real estate is less valuable.

Examples

NPR puts an extensive footer across the bottom of each of its pages (see Figure 10-11). It
includes standard navigational links, a search box, the full-size site, a link to download an
app, and a font size control.

Amazon uses a simpler, shorter Bottom Navigation system. See the screenshot in Figure 10-10
at the top of the pattern.

In contrast, Google uses a more web-like footer on many of its mobile properties (see
Figure 10-12). These links are smaller and look more like the brand, but they are far
harder to hit with clumsy fingertips.

458  Chapter 10:  Going Mobile

Figure 10-11. NPR’s Bottom Navigation Figure 10-12. Google Images footer

The Patterns  459 

Thumbnail-and-Text List

Figure 10-13. iPhone App Store

What

Present a selectable list of items, with each item containing a thumbnail image, some text,
and possibly smaller text as well. If appropriate, use bold colors, icons, and other visual
differentiators.

Use when

You need to show lists of articles, blog entries, videos, applications, or other complex
content. Many or all of these have associated images. You want to invite the user to click
on these items and view them.

Why

Thumbnail images improve text-only lists because they look appealing, help identify
items, and establish a generous height for the list items.

460  Chapter 10:  Going Mobile

Reading conditions on mobile devices are rarely ideal. By adding colorful images, you can
improve the visual differentiation among items, which helps people scan and parse the
list quickly.

Many news and blog websites have converged on this design pattern as a way to show
links to their articles. They look more appealing, and more “finished,” than similar sites
that only list article titles or text fragments.

How

Place a thumbnail image next to the text of the item. Most sites and apps put the thumb-
nail on the left.

In addition to picture thumbnails, you can include other visual markers, such as five-star
ratings or icons representing people’s social presence.

Don’t be afraid to use bright or saturated colors. You probably wouldn’t design so much
visual stimulation in a desktop context, but in a mobile context, it works. Even if the col-
ors seem garish, don’t worry—small screens can handle strong colors better than large
screens can!

Examples

Many news sites use this pattern to show their articles. Yahoo! News and Boston.com offer
good examples. Special-interest journalism sites such as Mashable also use Thumbnail-and-
Text Lists effectively for their feature articles. See Figure 10-14.

Figure 10-14. Yahoo! News, Boston.com, and Mashable

Videos and other media fit this pattern naturally. As shown in Figure 10-15, YouTube, IMDb,
and Kobo show thumbnails representing their videos, movies, and books. Note the rating
stars on the YouTube and Kobo listings (and on the iPhone app store, in Figure 10-13 at the
top of the pattern). These help a user scan down a list and pick out items with more stars.

The Patterns  461 

IMDb also shows user ratings, but it eschews stars in favor of plain text, and it doesn’t
draw the eye—it just blends in with the rest of the text. Note also that the subdued and
tasteful colors of the Kobo book reader look beautiful, but don’t help differentiate items as
strongly as the bolder colors used by YouTube or the app store.

Figure 10-15. YouTube, IMDb, and Kobo apps

Finally, many apps show Thumbnail-and-Text Lists of other, diverse kinds of items: birds
(from iBird Explorer), products (the Google iPhone app), and menu items in a complex
information architecture (Buzz Aldrin’s Portal to Science and Space Exploration); see
Figure 10-16.

Figure 10-16. iBird, Google, and Buzz Aldrin

462  Chapter 10:  Going Mobile

Infinite List

Figure 10-17. iPhone Mail app

What

At the bottom of a long list, put a button that loads and appends more items to the list.

Use when

You need to show long lists of email messages, search results, an archive of articles or blog
posts, or anything else that is effectively “bottomless.”

Users are likely to find desired items near the top, but they sometimes need to search
further.

Why

The initial loading of a screenful or two of items is fast, and the user doesn’t get stuck waiting
for a very long initial page load before she sees anything useful.

Each subsequent loading of a new chunk of items is also fast, and it’s under user control—
the user decides when (and whether) she needs to load more items.

Since the new items are just appended to the current page, the user never has to context-
shift by going to a new page to see new items, as she would with paginated search results.

How

When the page or list is initially sent to the mobile device, truncate the list at a reasonable
length. That length will vary greatly with item size, download time, and the user’s goal—is
she reading everything (as with Facebook), or just scanning a large number of items to
find the one she wants (as with search results)?

At the bottom of the scrolled page, put a button that lets the user load and show more
items. Let the user know how many more will be loaded.

The Patterns  463 

Alternatively, you could use no button at all. After the user has loaded and can view the
first chunk of items, silently start loading the next chunk. Append them to the visible list
when they’re ready, and the user has scrolled down to the end of the original list. (This is
your clue that the user may want to see more. If the user doesn’t scroll down, don’t bother
getting more items.)

In software engineering, this well-known approach to managing lists of undefined length
is often called lazy loading.

Examples

Several iPhone applications use Infinite Lists, including Mail (Figure 10-17), as well as
iTunes and third-party apps such as Facebook (Figure 10-18). The iTunes button only
loads 10 more items, which seems like too small a number for an eager music listener, but
the Mail app loads many screenfuls of new messages; it seems to balance download time
and quantity fairly well. The Facebook app, like the full-size Facebook page, loads up the
first several pages of updates and then lets the user load more.

Figure 10-18. Facebook and iTunes

You can also do this with a web page. Gmail Buzz loads a few screenfuls of updates and
then offers a “Load more” button; so does Mashable (see Figure 10-19).

464  Chapter 10:  Going Mobile

Figure 10-19. Buzz and Mashable

Generous Borders

Figure 10-20. Best Western’s mobile site

http://patterns.design4mobile.com/index.php/Infinite_List

The Patterns  465 

What

On devices with touch screens, put large margins and whitespace around buttons, links,
and any other tappable control.

Use when

You need to use buttons with text labels, or a list of items, or ordinary text-based links—in
short, any touch target that isn’t already large on the screen.

Why

Touch targets must be large enough for clumsy fingers to hit successfully. In particular,
they need to be tall enough, which is challenging for buttons and links that consist only
of text.

How

Surround each touch target with enough inner margin, border, and surrounding
whitespace to make a sufficiently large hit target for fingertips.

One trick is to make the whitespace immediately surrounding a target tappable. The but-
ton will look the same size, thus fitting into your visual design as expected, but you gain
a few pixels of sensitivity in each direction around the button. Dan Saffer, in Designing
Gestural Interfaces, uses the term iceberg tips for controls such as these—they are bigger
than they appear.

Exactly how big to make these targets is a very good question. Ideally, you want a size that
ends up large enough on the physical device to be manipulated by most people—many of
whom will have large fingers. Some others will not have great control over their fingertips.
Yet others will be using their mobile devices in challenging conditions: bad light, moving
vehicles, little attention to spare.

So ultimately, how big should you make your targets? It depends on whom you ask.
There’s no consensus on minimum target size, but different references make these claims:

•	 3/4 × 3/4 inches, separated by 1/8 inch (http://www.sapdesignguild.org/resources/
TSDesignGL/Index.htm)

•	 9.6 mm (http://portal.acm.org/citation.cfm?id=1152260)

•	 1 × 1 cm square (Nokia’s S60 5th Edition C++ Developer’s Library v2.1, among others)

•	 44 × 44 pixels on an iPhone (iPhone Human Interface Guidelines)

And there’s more. See Luke Wroblewski’s discussion at http://www.lukew.com/ff/entry.
asp?1085 for even more information.

http://portal.acm.org/citation.cfm?id=1152260
http://www.lukew.com/ff/entry.asp?1085
http://www.lukew.com/ff/entry.asp?1085

466  Chapter 10:  Going Mobile

Examples

The IMDb application for the iPhone reliably puts plenty of margin space around its
touch targets. The whole application has a relaxed, uncramped feeling, as shown in
Figure 10-21.

Figure 10-21. Screens from the IMDb app

The Epicurious app is similar, though its visual styling is quite different. The buttons for
key actions—“find a recipe,” “view recipe”—are quite large and distinctive, as shown in
Figure 10-22.

Figure 10-22. Screens from the Epicurious app

The Patterns  467 

Text Clear Button

Figure 10-23. The URL box in Safari

What

Clear a text field with one button press.

Use when

Whenever a text field is needed in the mobile interface, consider using a Text Clear Button.
It is especially valuable for fields that hold long strings of text, such as search strings,
URLs, and multiline text.

Why

Erasing long strings of text letter by letter is slow and error-prone. Don’t force your users
to do this.

Some mobile platforms have no facility for cut, copy, and paste. A cut operation may suf-
fice for erasing text—so would the selection of all of a text field’s contents—but even if
those exist it’s easier just to tap a single target to erase the field.

How

Put a simple “X” or “Clear” button into the text field. A button beside the text field can
also work, though you’d want to usability-test it to find out whether users see it or not—
they may see it as a “Go” or “Search” button instead.

If the platform offers a “Clear” button as a built-in feature for text fields, use it. I have
watched users struggle to clear text fields when this feature was not provided, on early
versions of Android—it’s painful to watch people erase a long search field letter by letter
by letter. I’ve also watched people use iPhone apps that didn’t use its standard clear button;
these users had a strong expectation that the “X” button would appear in text fields, and
were unhappy when it wasn’t provided.

468  Chapter 10:  Going Mobile

Examples

There aren’t many varied examples of this pattern to show as of this writing. Figure 10-24
shows the websites of two large search engines that insert a Text Clear Button into their
search fields.

Figure 10-24. Clear buttons as used by Google and Bing

Loading Indicators

Figure 10-25. The iPhone Stocks app waiting for chart data

What

While a page or page section is loading, show a progress indicator in the place where it
will be (or where the user tapped or clicked).

http://patterns.design4mobile.com/index.php/Clear_Text_Field

The Patterns  469 

Use when

The user has to wait for content to load, especially in a page that changes dynamically in
response to user interaction.

Why

Loading new content can be slow and erratic over mobile connections.

You should always show as much of a partially loaded page as you can, so the user can
actually see something useful.

In general, progress indicators make loading times appear faster to a user. She is reassured
that something is actually happening in response to a gesture, especially when that indica-
tor appears where the gesture occurred.

How

Show as much of the page as can be loaded quickly, but if part of it takes a long time, such
as a graphic or video, show a lightweight animated progress indicator where the graphic
will appear. (The mobile platform may supply a default indicator.)

When the user initiates an action that causes part of the page to be reloaded—or loads a
whole new page—show a progress indicator in situ on the page.

Examples

Flickr’s mobile website uses loading indicators very skillfully. When the user taps a picture
thumbnail to see the whole picture, the thumbnail is overlaid by a Flickr logo that moves
until the new image is ready to show (see Figure 10-26).

Figure 10-26. Flickr’s animated loading indicator

When an iPhone installs a new app, the app’s icon literally shows a miniature progress bar
to show how far it’s gotten with the download (see Figure 10-27). It’s cute, and its meaning
is unmistakable.

470  Chapter 10:  Going Mobile

Figure 10-27. iPhone’s app installation progress bar

Richly Connected Apps

Figure 10-28. Freedom Trail app for iPhone

What

Inside your mobile app put direct links to other apps, such as the phone dialer, map, or
browser. “Prefill” them with data from the user’s current context.

http://patterns.design4mobile.com/index.php/Wait_Indicator

The Patterns  471 

Use when

The mobile app shows data that is “connectable” in obvious ways, such as phone numbers
and hyperlinks.

More subtly, your app may offer ways to capture images (via the device camera), sound,
or video. It may even be aware of social networking conventions, such as Facebook or
Twitter usernames. In all cases, your app might direct the user to another app to perform
these device-based functions.

Why

A user can only see one mobile app at a time, even when multiple apps are being used at
once, and it’s annoying to switch between them by hand.

Mobile devices often have enough context and available functionality to offer intelligent
paths between apps.

As of this writing, mobile devices have no good way to arbitrarily shuffle small amounts
of information from one application to another. On the desktop, you can type easily, or
use copy and paste, or even use the filesystem. You don’t have those options on a mobile
platform. So, you need to support moving that data automatically.

How

In your app, keep track of data that might be closely associated with other apps or ser-
vices. When the user taps or selects that data, or uses special affordances that you provide,
open another app and handle the data there.

Here are some examples. Consider all the ways that data in your app can connect directly
to other mobile functions.

•	 Phone numbers connect to the dialer.

•	 Addresses connect to the map, or to the contacts app.

•	 Dates connect to the calendar.

•	 Email addresses connect to the email app.

•	 Hyperlinks connect to the browser.

•	 Music and videos connect to media players.

In addition, you might be able to do such things as take a picture, or use a map, entirely
within the context of your application.

You can do some of this on a desktop, but the walled-garden nature of many mobile de-
vices makes it easier to launch the “right” app for certain kinds of data. You don’t have to
decide which email reader to use, or which address or contact management system, and
so on. Plus, many mobile devices supply a phone dialer, a camera, and geographic loca-
tion services.

472  Chapter 10:  Going Mobile

Examples

The Freedom Trail application for the iPhone, shown in Figure 10-28, explicitly illustrates
its links to other apps. The user chooses whether to follow them for more information, or
just to stay within the app; this transparency is useful and refreshing.

The Facebook app for iPhone connects to the camera on the device (see Figure 10-29).
The integration is close; users can take a picture and immediately post it to Facebook,
without ever seeming to leave the Facebook app. Facebook can also reach the preexisting
photos on the iPhone.

Figure 10-29. Facebook’s integration with the camera

The iPhone’s map application (Figure 10-30) connects to the contacts app to add a per-
son’s address to her contact info, and to email and MMS for sharing a location. (Of course,
many other applications, both mobile and otherwise, also have “Email this” or “Share this”
features. See the Sharing Widget pattern in Chapter 9, for example.)

The Patterns  473 

Figure 10-30. The iPhone map application connecting to contacts, mail, and MMS

Streamlined Branding

Figure 10-31. Walmart’s mobile site compared to its full site

474  Chapter 10:  Going Mobile

What

Use your organization’s logo, colors, and other brand elements on the mobile site or app,
but keep them small on the screen and fast to load.

Use when

All mobile apps or sites that are associated with a company or organization should use this.

Why

Users need to be able to identify your app or site as yours. In usability testing, people
respond well to reliable, familiar branding, especially when the brand is already known
outside of the mobile context.

Mobile screens don’t have much space to spare for elements that aren’t actual content.

Mobile network connections can be slow, and heavyweight images don’t download fast
enough.

How

Create a small version of your logo, no taller than around 50 pixels, so that it takes up as
little vertical space as you can get away with. If you’re creating different designs for dif-
ferent screen sizes or platforms, consider making different versions of the logo for each.

Apply your brand’s colors and font families in the mobile design. A basic text interface
may function well enough, but it won’t look professional or polished.

Avoid using very large and complex images as stylistic elements. Download time is as
important in a mobile context as on the desktop (and often more so). If you’re working in
HTML, depend on stylesheets when you can, rather than handcrafted images.

Strong contrast and large, readable text will help people use your mobile site when the
conditions are poor (bright light, motion, distraction). Even if your brand calls for visual
subtlety and small, tasteful text, do what needs to be done for the sake of usability—adapt
the brand look to the platform.

Examples

There are good examples of this pattern all over the mobile web. Going back to the first
example given in this chapter, JetBlue pares down its branding to a look that is polished
and recognizable, but works well on even a tiny mobile device (see Figure 10-32).

The Patterns  475 

Figure 10-32. JetBlue’s mobile branding

Fandango’s mobile site also takes a minimalist approach (see Figure 10-33). Like JetBlue,
Fandango uses a polished-looking logo and style, but the site loads fast and can be used
on tiny screens. None of the bandwidth-hogging images, ads, or video is loaded onto the
mobile device.

Figure 10-33. Fandango’s mobile branding

476  Chapter 10:  Going Mobile

Whole Foods maintains a very consistent brand look across its full-page and mobile sites.
But its mobile site consumes more above-the-fold space than necessary with top navigation,
and it downloads several large images, making it slower than it could be (see Figure 10-34).

Figure 10-34. Whole Foods’ mobile branding

Chipotle’s mobile website shows how not to do mobile branding (see Figure 10-35). The
brand is strong enough on the main site, but none of it shows up on the mobile site except for
a too-small version of the logo! The site uses only a neutral font and colors. (To be fair, the site
does supply an iPhone app that has stronger branding, but it’s not likely that a very occasional
customer will bother with the hassle of downloading it if the website fills her needs.)

Figure 10-35. Chipotle’s mobile branding (or lack thereof)

Chapter 11

Making It Look Good:
Visual Style and Aesthetics

In 2002, a research group discovered something interesting. The Stanford Web Credibility
Project* set out to learn what causes people to trust or distrust websites, and much of what
they found made intuitive sense: company reputation, customer service, sponsorships,
and ads all helped users decide whether or not a website was credible.

But the most important factor—number one on their list—was the appearance of the
website. Users did not trust sites that looked amateurish. Sites that made the effort to craft
a nice, professionally designed look made a lot more headway with users, even if those
users had few other reasons to trust the site.

Here’s another data point. Donald Norman, one of the best-known gurus of interaction
design, concluded that “positive affect enhances creative, breadth-first thinking whereas
negative affect focuses cognition, enhancing depth-first processing and minimizing dis-
tractions.” He added: “Positive affect makes people more tolerant of minor difficulties and
more flexible and creative in finding solutions.”† Interfaces actually become more usable
when people enjoy using them.

Looking good matters.

For many chapters now, we’ve talked about the structure, form, and behavior of an appli-
cation; now we’ll focus more on its “skin” or its “look-and-feel.” Chapter 4 discussed some
graphic design basics. That chapter covered visual hierarchy, visual flow, focal points, and
the Gestalt principles of proximity, similarity, continuity, and closure. These topics form
the foundation of page organization, and should not be shortchanged.

*	 See http://credibility stanford.edu.
†	 See Donald Norman, “Emotion and Design: Attractive Things Work Better,” at http://jnd.org/dn.mss/emo-

tion_design_attractive_things_work_better.html. See also his book on the subject, Emotional Design: Why We
Love (or Hate) Everyday Things (Basic Books).

http://jnd.org/dn.mss/emotion_design_attractive_things_work_better.html
http://jnd.org/dn.mss/emotion_design_attractive_things_work_better.html

478  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

But there’s more to a nice house than just its room layout. When you pay for a well-
designed new house, you also expect beautiful carpets, paint colors, wall textures, and
other surface treatments. Without them, a house can be perfectly functional but uninspir-
ing. Completing the job means paying attention to detail, fit, and finish.

Beautiful details don’t necessarily affect the efficiency with which people accomplish tasks
in the house or interface (although research indicates that it sometimes does). But they
certainly affect whether or not people enjoy it. That, in turn, affects other behavior—such
as how long users linger and explore, whether they choose to go there again, and whether
they recommend it to other people.

You could even think about it as a moral issue. What kind of experience do you want
your users to have? Do you want to give them an all-gray application that bores them, or
a flashy ad-filled application that irritates them? Would you rather give them something
they enjoy looking at, maybe for hours at a time?

Of course, far more than visual style influences a user’s emotional response (affect).
Chapter 1 began discussing other considerations, such as how well you anticipate users’
usage habits. Software can pleasantly surprise people with considerate design. Tightly
packed layouts evoke a different affective response than sparse, open layouts. Language
and verbal tone play a huge part in this response, as does the quality of the software
itself—does it “just work,” and is it fast and responsive?

A well-designed interface takes all of these factors into account. When content, meaning,
and interactive behavior all work in concert with your visual style, you can evoke a chosen
emotional response very effectively.

With products and websites, stylistic elements are often designed to support branding.
The design of any software product or site expresses something about the organization
that produced it (even if it’s a loosely knit group of open source developers). It might say
something neutral, or it might send a focused message: “You can trust us,” “We’re cool,”
“We build exciting things.” A brand identity encompasses more than just a logo and tag
line. It runs throughout an organization’s product designs, its website, and its advertising
materials—in fact, the brand’s chosen color schemes, fonts, iconography, and vocabu-
lary show up everywhere. When planned well, a complete brand identity is coherent and
intentional.

Same Content, Different Styles  479 

A brand identity is important because it establishes familiarity and sets expectations for
someone’s experience with an organization’s products. Ultimately, a good brand should
make people feel better about using those products. Look at what Apple was able to do
with brand loyalty: many people love Apple products and seek them out.

In any case, whether or not they are intended to support a brand, stylistic elements make
statements about your product. They communicate attributes such as reliability, excite-
ment, playfulness, energy, calmness, strength, tension, and joy. What do you want to
communicate?

This chapter discusses more visual design concepts, this time focusing less on formal
structure and more on these emotionally based attributes. The chapter won’t make an
artist out of you—that takes serious practice and study. But the patterns capture some
techniques commonly found on well-designed artifacts and explain why they work.

Same Content, Different Styles
To explore how styles evoke different visceral and emotional reactions, we can try apply-
ing different visual styles to identical content. The actual content isn’t even that impor-
tant—we’re looking for immediate, prerational reactions here, not the impressions gained
from reading and interacting with the content.

The CSS Zen Garden website (http://csszengarden.com) offers us exactly that situation.
Invented as a showcase for CSS-based web design, this site provides a single HTML page
to all participants—everyone gets the same body text, the same HTML tags, and the same
lists of links. Participants then create unique CSS files to define new visual designs for the
page, and contribute them to the site. Visitors can browse through all the contributed CSS
designs. It’s a delightful way to spend an hour or three, especially if you’re teaching your-
self about visual design and trying to understand what you do and do not like.

Figures 11-1 through 11-8 present a sample of these designs. In each case, the basic content
is the same; only the design has changed. Take some time to examine each one. When you
look at each design, what is your immediate, visceral reaction? What words come to mind
that describe the page? Does it draw you in, repel you, make you nervous, or delight you?

http://csszengarden.com

480  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-1. Design 1

Same Content, Different Styles  481 

Figure 11-2. Design 2

482  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-3. Design 3

Same Content, Different Styles  483 

Figure 11-4. Design 4

484  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-5. Design 5

Same Content, Different Styles  485 

Figure 11-6. Design 6

486  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-7. Design 7

Same Content, Different Styles  487 

Figure 11-8. Design 8

488  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

The Basics of Visual Design
As you looked at the Zen Garden examples, you might have observed how they achieve
such different impressions—a page’s color scheme may cause you to either smile or cringe,
for example. Using these examples as a touchstone, we can talk about some of the prin-
ciples of good visual design.

You might recall that we already covered some visual design principles in Chapters
4 and 7. Those chapters explored how the human visual system responds cognitively to
certain inputs. The time it takes for someone to click on an orange square out of a field
of blue squares, for example, doesn’t depend upon a user’s aesthetic sense or cultural
expectations.

But now we’re talking about emotional and visceral reactions—does a single orange square
add tension to a design, brightness, balance, or nothing at all? The answer depends on so
many factors that it’s genuinely hard to get it “right” without a lot of practice. The cogni-
tive aspects of these design choices certainly play a part; for starters, you can make a page
hard or easy to read (a cognitive effect). But each person is unique. Each person has a
different history of experiences, associations, and preferences; and each person is part of
a culture that imposes its own meanings on color, typography, and imagery.

Furthermore, the context of the design affects the user’s response. Users see your design
as part of a genre (such as office applications, games, or e-commerce sites), and they
will have certain expectations about what’s appropriate, trite or original, and dull or in-
teresting. Branding also sets expectations. So here’s the problem: as soon as you learn a
“rule” for evoking an emotional reaction using a design principle, you can find a million
exceptions.

That being said, if you know your audience well, visceral and emotional responses are
surprisingly predictable. For example, most readers of this book probably thought that
the first CSS example was a calm, soothing design, but that the second one was noisier
and tenser. Why is that?

The answer lies in a combination of many factors working in concert: color, typogra-
phy, spaciousness, angles and shapes, repeated visual motifs, texture, images, and cultural
references.

Color
Color is immediate. It’s one of the first things you perceive about a design, along with
basic forms and shapes. Yet the application of color to art and design is infinitely subtle—
master painters have studied it for centuries. We can only scratch the surface here.

When devising a color scheme for an interface, first rule out anything that makes the text
difficult to read:

•	 Always put dark foregrounds against light backgrounds, and vice versa—to test, pull
the design into an image tool such as Photoshop and desaturate it (make it grayscale).

The Basics of Visual Design  489 

•	 Never use red versus green as a critical color distinction, since many colorblind peo-
ple won’t be able to see the difference. Statistically, 10% of men have some form of
colorblindness, as do about 1% of women.

•	 Never put bright blue, small text on a bright red or orange background or vice versa,
because human eyes quickly get fatigued when reading text written in complemen-
tary colors (colors on opposite sides of the color wheel).

With that out of the way, here are some very approximate rules for color usage:

Warm versus cool
Red, orange, yellow, brown, and beige are considered “warm” colors. Blue, green,
purple, gray (in large quantities), and white are considered “cool.” The yellow CSS
Zen Garden in Design 6 (Figure 11-6) feels vividly “hot,” despite the cool gray metal-
lic surface used behind the content itself. Sites and interfaces that need to connote
respectability and conservativeness often use predominantly cool colors (especially
blue). Still, warm and cool colors can combine very effectively to achieve a balanced
look—and they frequently do, in classic paintings and poster designs.

Dark versus light background
The pages with light backgrounds—white, beige, and light gray—feel very different
from the ones with very dark backgrounds. Light is more typical of computer inter-
faces (and printed pages); dark pages can feel edgier, more somber, or more energetic,
depending on other design aspects.

High versus low contrast
Whether the background is dark or light, the elements on that background might
have either high or low contrast against it. Strong contrast evokes tension, strength,
and boldness; low contrast is more soothing and relaxing.

Saturated versus unsaturated
Highly saturated, or pure, colors—brilliant yellows, reds, and greens, for example—
evoke energy, vividness, brightness, and warmth. They are daring; they have char-
acter. But when overused, they can tire the eyes, so most UI designs use them spar-
ingly; they often choose only one or two. Muted colors, either dark or light (tones or
tints, respectively), make up the bulk of most color palettes. The green and blue Zen
Garden design gets away with two saturated colors by using white borders, white text,
and dark halos to separate the green and blue. (Even so, you probably wouldn’t want
to stare at that green all day long in a desktop application.)

Combinations of hues
Once you start combining colors, interesting effects happen. Two saturated colors
can evoke far more energy, motion, or richness than one alone. A page that combines
one saturated color with a set of muted colors directs attention to the saturated color
and sets up “layers” of color—the brighter and stronger ones appear closer to the
viewer, while the grayer and paler colors recede. Strong dimensionality can make a
design dramatic. Flatter designs, with more muted or lighter colors, are calmer. See
the Few Hues, Many Values pattern for more discussion.

490  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Typography
By choosing a font (properly called a typeface) for a piece of text, you decide what kind
of voice that text is “spoken” in. The voice might be loud or soft, friendly or formal, col-
loquial or authoritative, hip or old-fashioned.

As with color, readability—the cognitive part—comes first when choosing type. Small
text—or what’s called “body text” in print and on websites—demands careful choice. The
following considerations for body text also apply to “label fonts” in GUIs, used to caption
text fields and other controls:

•	 On computer displays, sans-serif fonts often work better at very small point sizes,
unlike print, in which the serifed fonts tend to be more readable as body text. Pixels
aren’t big enough to render tiny serifs well. (Some serifed fonts, such as Georgia, do
look OK, though.)

•	 Avoid italicized, cursive, or otherwise ornamental fonts; they are unreadable at small
sizes.

•	 Highly geometric fonts tend to be difficult to read at small point sizes, as the circular
letters (e, c, d, o, etc.) are hard to differentiate. Futura, Univers, and some other mid-
20th-century fonts are like this.

•	 All-caps is too hard to read for body text, though it works fine for headlines and short
texts. Capital letters tend to look similar, and are hard for a reader to differentiate.

•	 Set large amounts of text in a medium-width column when possible—say, around 10
to 12 English words on average. Don’t right-justify narrower columns of text; let it be
“ragged right.”

Now for the visceral and emotional aspects. Fonts have distinctive voices—they have dif-
ferent graphic characteristics, textures, and colors on the page. For instance, some fonts
are dense and dark, while others are more open—look at the thickness of strokes and the
relative sizes of letter openings for clues, and use the “squint test” if you need a fresh and
objective look at the font. Some fonts have narrower letters than others, and some font
families have “condensed” versions to make them even narrower. The separation between
lines of text (the leading) might be distant or close, making the block of text look either
more open or more solid.

Serifs and curves add another dimension to font color and texture. Serifs add a level of
scale that’s much smaller than the letterform itself, and that adds refinement to the font’s
texture—the thick sans-serif fonts look blunt, strong, or even coarse in comparison (espe-
cially Helvetica). The curves and angles used in each letterform, including those that form
the serifs, combine to form an overall texture. Compare an old-fashioned typeface such
as Goudy Old Style to another classic serifed font such as Didot; they look very different
on the page. See Figure 11-9.

The Basics of Visual Design  491 

Figure 11-9. Eight fonts, as rendered on Mac OS X; notice the different sizes, densities, textures, and
formalities

Though it’s not always easy to explain why, some fonts speak with a formal voice, while
others speak with an informal voice. Comic Sans and other playful fonts are certainly
informal, but so is Georgia, when compared to Didot or Baskerville. All-caps and capital-
ized words speak more formally than lowercase; italics speak informally. In the CSS Zen
Garden designs shown earlier, Design 8 (Figure 11-8) uses an all-caps, sans-serif font
to speak in a cool and removed voice. Meanwhile, Design 5 (Figure 11-5), which uses
Georgia, speaks in a warm and informal voice.

492  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Cultural aspects come into play here, too. Old-fashioned fonts, usually with serifs, tend to
look—wait for it—old-fashioned, although anything set in Futura (a sans-serif font) still
looks like it came from a 1963 science textbook. Verdana has been used so much on the
Web that it’s now standard for that medium. And Chicago always will be the original Mac
font, no matter what context it’s used in.

Spaciousness and Crowding
Some of the CSS Zen Garden designs use plenty of whitespace, while others crowd the
page elements together. Spaciousness on a page gives an impression of airiness, openness,
quiet, calmness, freedom, or stateliness and dignity, depending on other design factors.

Crowded designs can evoke urgency or tension under some circumstances. Why? Because
text and other graphic elements need to “breathe”—when they’re colliding against each
other or against the edges or borders of the page, they cause visual tension. Our eyes
want to see margins around things. We get slightly disturbed by designs such as CSS
Zen Garden Design 2 (Figure 11-2), which shoves the headlines right against the text.
Likewise, the compact layout of Design 6 (Figure 11-6) somehow contributes to the busy,
industrial feel of the page, though it doesn’t have collisions like Design 2.

However, not all crowded designs evoke that kind of tension. Some connote friendliness
and comfort. If you give the text and other elements just enough space and reduce the
interline spacing (leading) to the smallest amount that is comfortably readable, you might
achieve a friendlier and less rarified look. Design 5 (Figure 11-5) illustrates this well.

Angles and Curves
A page composed of straight up-and-down lines and right angles generally looks calmer
and more still than a page containing diagonal lines and nonrectangular shapes. Likewise,
a page with many different angles has more apparent motion than a page with a single
repeated angle on it; see Design 7 (Figure 11-7) for a dramatic example. Design 6 uses
angles to create uneasiness and visual interest.

Curves can also add motion and liveliness, but not always. A design made with a lot of
circles and circular arcs can be calming and restful. But a curve swooping through a page
sets the whole design in motion, and a few carefully chosen curves in an otherwise rectan-
gular design add sophistication and interest. Design 8 (Figure 11-8) uses a single large el-
liptical curve for a dramatic effect—it contrasts strongly against the otherwise rectilinear
design, so its impact is high.

The Basics of Visual Design  493 

Wherever two curves intersect, notice what the geometrical tangents to those curves are
doing. Are the tangents at right angles? That results in a calmer, more still composition;
if they cross at a more acute angle, the design has more tension and apparent motion.
(Again, these aren’t hard-and-fast rules, but they’re generally true.)

When using angles, curves, and nonrectangular shapes, think about where the focal points
are: at sharp angles, where lines cross, and where multiple lines converge, for instance. Use
these focal points to draw the viewer’s eye where you want it to go.

Texture and Rhythm
Texture adds richness to a visual design. As described in the “Typography” section, text
forms its own texture,* and you can control the look of that texture by choosing good
fonts. For many pages and interfaces, fonts are the most important texture element.

But other kinds of textures deserve attention, too. Blank regions, such as the strips of
empty space down the sides of a web page, can look much better when filled with a tex-
ture. You also can use textures to surround strong visual elements and set them off, as
done in Designs 6 and 7. Textures add visual interest, and depending on what they look
like, they can add warmth, richness, excitement, or tension. The most effective textures
in interface design are subtle, not vivid checkerboards of eye-hurting colors. They use
gentle color gradations and very tiny details. When spread over large areas, their impact
is greater than you might think. Figure 11-10 shows some of the margin textures in the
CSS designs. Single-pixel dots, parallel lines, and finely drawn grids are nice geometric
textures; they’re easy to generate and render, and they add refinement to a design. See the
Hairlines pattern.

Be careful when using textures behind words on a computer screen—it rarely works. All
but the subtlest textures interfere with the readability of small text. You can put them be-
hind large text, but watch the way the edges of the letterforms interact with the different
colors in the texture, as that can visually distort the letters. Try fading a texture into a solid
color as it approaches a block of text.

*	 On an interesting etymological note, the English words text, texture, and textile all derive from the same Latin
root, texere, meaning “to weave.” Isn’t that evocative?

494  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-10. Details of textures in four CSS designs

Images
Each of the CSS Zen Garden designs reproduced here uses imagery. Some of the images
are photographs; others are iconic semi-abstract pictures. In all cases, the images exist
purely to set the mood of the design. These particular designs can go as far as they need
to set that mood, since in the CSS Zen Garden, design is more important than content.

Your situation is probably different. In most web pages and applications, content and ease
of use are more important than style. You should use purely decorative images sparingly
and with great care on functional GUIs, since they tend to be distracting.

That being said, you should look at the functional icons and images in your design—
such as toolbar icons and website image links—and see if they make the emotional state-
ment you want the whole design to make. Use the same criteria listed here: color, texture,
angles, curves, spacing, and so on. Specifically, color schemes, angles, and curves should
be consistent across an icon set. Don’t make them look too much alike, though, or users
won’t see the differences easily. Larger icons usually “feel” better than small ones, partly
because you can draw them more generously and partly because of the crowding and
space issues discussed earlier.

The Basics of Visual Design  495 

Back to decorative imagery. Photographs are extraordinary tools for evoking emotion-
al responses. How many web pages have you seen showing happy, smiling faces? Kids
flying kites? Competent-looking businesspeople in crisp suits? How about roads wind-
ing through beautiful mountain scenery? Sunsets or beaches? Rolling grassy hills under
sunny blue skies?

These kinds of pictures appeal to our deepest human instincts, and they all predispose the
viewer to respond positively—as long as the context is right. If you try to put powerful
images like these on an unassuming little utility application, users might laugh or criticize
it as marketing overkill. This is a delicate area, so if you’re not sure something works, test
it with users.

Cultural References
A design might remind you of something cultural—a brand, movie, art style, historical
era, literary genre, or inside joke. A familiar reference may evoke memories or emotions
strong enough to trump all these other design factors, though the best designs make cul-
tural references work in concert with everything else.

Design 7 might remind you of 1970s pop art. That’s almost certainly deliberate. The feel
of the page is informal, lively, and playful—note the angles, color, typography, and denim
texture. The emotional reaction from most American adults probably will be “silly,” “nos-
talgic,” “retro cool,” or something like that. Everything in this design works together to
produce a specific gut reaction. Some other CSS Zen Garden designs that are not shown
here replicate the styles of Bauhaus, art nouveau, Dadaism, comic books, and even Soviet-
era Communist propaganda posters.

Obviously, if you make overt cultural references, consider your audience. A 10-year-old
will not get the 1970s pop-art reference. Chances are good that a young adult in India
won’t either. But if your audience is sufficiently well defined for you to know that a cul-
tural reference will be familiar to them, it can be a good “hook” to engage a viewer emo-
tionally with your design.

Cultural references rarely are used in functional application designs, but you can see them
in Skins and Themes for platforms and individual applications. You also can find cultural
references in applications like QuickBooks, in which some pages are designed to look like
checks and bills. They actually move beyond a stylistic treatment and become an interac-
tion metaphor, but the metaphor still is entirely cultural—someone who has never seen a
checkbook wouldn’t respond in the same way as someone who has.

Repeated Visual Motifs
A good design has unity: it hangs together as one entity, with each element supporting the
others structurally and viscerally. That’s a hard goal to achieve. I can’t give you hard-and-
fast rules on how to do it; it takes skill and practice.

496  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

But one thing that contributes greatly toward visual unity is the repetition of visual ele-
ments or motifs. We’ve already talked about angles and curves; you can use diagonal lines
of the same angle, or lines with similar curvature, as repeated elements in a design. The
Corner Treatments pattern talks about a common way to do this.

Also consider typography. Use only one main body-text font, though other fonts can work
very effectively in small areas such as sidebars or navigation links. (Their contrast to the
main font makes them stand out.) If you have several headlines or titled sections, use the
same headline font for them. You also can pull smaller graphic elements—line width and
color, for instance—out of your fonts into the rest of the design. See the Borders That Echo
Fonts pattern.

When similar groupings of text or controls repeat along a line, a visual rhythm results. You
can see this especially in the “Select a Design” sections of Designs 3, 4, and 8. They show
each design name/author pair in a well-defined grouping, and then repeat that grouping
along a column. You easily could accomplish the same effect with form fields, palette but-
tons, and other UI elements.

Rhythms like these can be powerful design tools. Use them with care, and apply them to
groups of comparable things—users will assume that similarity in form means similarity
in function. Chapter 4 discusses element repetition as part of a visual hierarchy; see the
Grid of Equals pattern there. Repetition also lies at the heart of other layout patterns such
as Thumbnail Grid (Chapter 5), Thumbnail-and-Text List (Chapter 10), and Small Multiples
(Chapter 7).

What This Means for Desktop Applications
Those of you who work on websites might already be familiar with everything discussed
so far. People expect websites—and by extension, web applications—to have strong
graphic styling, and you rarely will find them looking completely plain and neutral.

But what if you work on desktop applications? If you try to apply these principles just to
the controls’ look-and-feel—how the controls are drawn—you may not have many choic-
es. Java applications get to choose from a few look-and-feel options, most of which are
native looking or fairly neutral. Linux applications have some nice choices too, such as
GNOME’s application themes. But native Windows or Mac applications generally use the
standard platform look-and-feel, unless you’re willing to work hard to develop a custom
one.

Given the situation, you can be forgiven for just using the platform look-and-feel stan-
dards, and concentrating your graphic design attentions elsewhere.

What This Means for Desktop Applications  497 

But some applications now look more “web-ish” or “designer-y” than they used to, and
they generally look better for it. Microsoft Money 2000 was one of the first mainstream
applications to break the mold. Its designers chose to use background images in the top
margins, gradient fills, anti-aliased headline fonts, and an unusual color scheme. Other
applications have since done similar things.

Even if you do use a neutral look-and-feel for your actual widgetry, there still are ways to
be creative.

Backgrounds
Unobtrusive images, gradient fills, and subtle textures or repeated patterns in large
background areas can brighten up an interface to an amazing extent. Use them in
dialog or page backgrounds; tree, table, or list backgrounds; or box backgrounds (in
conjunction with a box border). See the Deep Background pattern for more.

Colors and fonts
You often can control overall color schemes and fonts in a native-looking UI, too. For
instance, you might draw headlines in an unusual font at several point sizes larger
than standard dialog text, and maybe even on a strip of contrasting background color.
Consider using these if you design a page layout with Titled Sections (Chapter 4).

Borders
Borders offer another possibility for creative styling. Again, if you use Titled Sections
or any other kind of physical grouping, you might be able to change how box borders
are drawn. Solid-color boxes of narrow widths work best; beveled borders look very
1990s now. See Corner Treatments and Borders That Echo Fonts.

Images
In some UI toolkits, certain controls let you replace their standard look-and-feel with
custom images on a per-item basis. Buttons often allow this, for instance, so your but-
tons, including their borders, can look like anything you want. Tables, trees, and lists
sometimes permit you to define how their items are drawn (in Java Swing, you have
complete control over item rendering, and several other toolkits at least let you use
custom icons). You also can place static images on UI layouts, giving you the ability
to put images of any dimension just about anywhere.

The biggest danger here is accessibility. Operating systems such as Windows let users
change desktop color/font themes, and that’s not just for fun—visually impaired users
use desktop themes with high-contrast color schemes and giant fonts just so they can see
what they’re doing. Make sure your design works with those high-contrast themes. It’s the
right thing to do.*

*	 And, depending on who buys your software, it may also be the legal thing to do. The U.S. government, for
example, requires that all software used by federal agencies be accessible to people with disabilities. See http://
www.section508.gov for more information.

http://www.section508.gov

498  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Along the same lines, you might replace ordinary text labels with images containing
unusual fonts, maybe with halos, drop-shadow effects, or complex backgrounds. This
is common in web pages. If you insist on using an image for text, you need to provide
enough information with that image to let a screen reader such as JAWS read it aloud.
(How exactly you do that depends entirely upon the UI technology you’re using.)

Another danger is fatiguing your users. If you design an application meant to be used at
full size or for a long time, tone down the saturated colors, huge text, high contrast, and
eye-catching textures—make the design quiet, not loud. More importantly, if your ap-
plication is meant to be used in high-stress situations, such as a control panel for heavy
machinery, strip out anything superfluous that might distract users from the task. Here,
cognitive concerns are far more important than aesthetics.

The Patterns
All of these patterns (except Skins and Themes) draw on the concepts described in the in-
troduction. They talk about specific ways to apply those concepts; Corner Treatments, for
instance, captures one kind of repeated visual motif, and Borders That Echo Fonts captures
another. Deep Background and Hairlines touch on texture choice, and fonts are discussed in
Contrasting Font Weights.

1.	 Deep Background

2.	 Few Hues, Many Values

3.	 Corner Treatments

4.	 Borders That Echo Fonts

5.	 Hairlines

6.	 Contrasting Font Weights

The Skins and Themes pattern is different. It deals more with metadesign—it says nothing
about how you design the specific look-and-feel of your application, but how you design
your application to let others replace your look-and-feel with their own designs.

7.	 Skins and Themes

The Patterns  499 

Deep Background

Figure 11-11. Firefox download page

What

Place an image or gradient into the page’s background that visually recedes behind the
foreground elements.

Use when

Your page layout has strong visual elements (such as text blocks, groups of controls, or
windows), and it isn’t very dense or busy. You want the page to look distinctive and attrac-
tive; you may have a visual branding strategy in mind. You’d like to use something more
interesting than flat white or gray for the page background.

Why

Backgrounds that have soft focus, color gradients, and other distance cues appear to re-
cede behind the more sharply defined content in front of them. The content thus seems to
“float” in front of the background. This pseudo-3D look results in a strong figure/ground
effect—it attracts the viewer’s eye to the content.

Fancy explanations aside, it just looks good.

500  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

How

Use a background that has one or more of these characteristics:

Soft focus
Keep lines fuzzy and avoid too much small detail—sharp lines interfere with read-
ability of the content atop it, especially if that content is text or small icons. (You can
kind of get away with sharp lines if they are low-contrast, but even then, text doesn’t
work well over them unless the text contrasts strongly with the background.)

Color gradients
Bright, saturated colors are OK, but again, hard lines between them are not. Allow
colors to blend into each other. In fact, if you don’t have an image to use in the back-
ground, you can create a simple color gradient in your favorite drawing tool—it still
looks better than a solid color. (You don’t need to store or download pure gradients as
images, either. On the Web, you can create them by repeating one-pixel-wide strips,
either horizontally or vertically. In systems where you can use code to generate large
areas of color, gradients generally are easy to program.)

Depth cues
Fuzzy detail and vertical color gradients are two features that tell our visual systems
about distance. To understand why, imagine a photograph of a hilly landscape—the
farther away something is, the softer and hazier the color is. Other depth cues include
texture gradients (features that get smaller as they get farther away) and lines radiat-
ing from vanishing points.

No strong focal points
The background shouldn’t compete with the main content for the user’s attention.
Diffuse (weak) focal points can work, but make sure they contribute to a balanced
composition on the whole page, rather than distracting the viewer from seeing the
parts of the page he should look at instead. See Figure 11-12.

Diffuse focal points Strong focal point

Figure 11-12. Diffuse versus strong focal points

The Patterns  501 

As you design an interface with a Deep Background, consider what happens when the user
changes the size of the page. How will the background accommodate a larger (or smaller)
size? Will it rescale to fit, or will the window just clip an unscaled image? Clipping is prob-
ably less unsettling to the user; it’s how most web pages behave, and it feels more stable.
Besides, you don’t have to worry about changing aspect ratios, which is problematic with
many images.

Examples

In Figure 11-13, four Mac OS background images illustrate the relative difficulties of
reading text and icons over complex backgrounds. The first two make it quite hard to
distinguish the folders and application shortcuts; the third is easier, and the fourth is the
easiest by far. Note the characteristics of these four backgrounds: high versus low contrast
with the text, hard versus soft focus, and general “noisiness.”

Figure 11-13. Four Mac OS backgrounds of varying readability

Some websites make heavy use of textures that lend the whole site a distinctive look. In
the example from Ecoki, shown in Figure 11-14, the textures are everywhere; but because
they are lightweight and low-contrast, they don’t interfere with the readability of the text.

502  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-14. Ecoki home page

The version of the Mercedes-Benz website shown in Figure 11-15 uses an image as a back-
ground. This image has some very strong focal points—the cars, of course—and they are
the central features of the page. But the outer parts of the image, which are much softer,
are Deep Backgrounds for other content: the search box, the four small images at the bot-
tom, and the “4MATIC All-Wheel Drive” tag line.

The most interesting aspect of this figure is the darker band running down the lefthand
side. The site needed a navigation bar with small text, but layering those links directly
over the background image wouldn’t have worked—the words may have been unreadable
over small detail, and would have gotten lost in the composition. A translucent smoked-
glass background highlights those white links by increasing contrast; it balances the page
(which otherwise is right-weighted); it doesn’t obscure the nice background image; and it
adds a sense of layered depth.

The Patterns  503 

Figure 11-15. Mercedes-Benz

Few Hues, Many Values

Figure 11-16. Mint

504  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

What

Choose one, two, or at most three major color hues to use in the interface. Create a color
palette by selecting assorted values (levels of brightness) from within those few hues.

Use when

You want a relatively conservative color scheme for an application or site. You want to
avoid a flashy, rainbow-colored, “angry fruit salad” look, but you still want the interface
to have some character.

Why

Where colors are concerned, sometimes less is better. Too many color hues scattered
throughout the interface, especially when they’re bright and saturated, can potentially
make a design noisy and cluttered. The colors compete for the user’s attention.

But when you use many subtle variations on a single color, you can create a design that has
depth and dimension. Consider the blue-green, yellow-green, and orange colors used in the
example in Figure 11-16 and reproduced in the color strips in Figure 11-17. Notice how the
more saturated colors move forward, while the paler colors appear to recede. (Grayer tones
will tend to recede as well, hence the drop-shadow effect seen in the Mint page.)

Figure 11-17. Colors used in Mint’s interface

How

As mentioned earlier, pick one, two, or even three main hues. You get black and white for
free, but gray counts. In fact, gray works very well in multiple values and brightness levels;
it’s very versatile, especially if you add a little color to make it more blue (cool) or more
beige (warm).

The Patterns  505 

Within those hues, vary the color value to get a range of bright and dark shades. You also
can vary the saturation at the same time; this can produce subtler color combinations
than you would get by varying just the value. Use as many of these colors as you want to
compile a color palette for the application.

You can, of course, use other colors in the interface besides these hues; just use them
sparingly. Icons, ads, and other features that take up relatively small spaces don’t have to
fit this restricted color scheme. You might want to choose only one or two accent colors
too, such as using red or cyan to mark points of interest. In fact, using a single hue for the
“background” of the UI actually emphasizes these minor colors because they don’t get lost
in a sea of color hues.

Examples

The graph in Figure 11-18 uses two hues, blue and pink, to show its data. Blue represents
boys’ names and pink represents girls’ names. Within those colors, the color value rep-
resents the popularity of those names in 2003. A third color, dark gray, shows the frame
around the data—the grid lines, the numbers, and the title—and a dark blue highlights
the selected name (“Dale”).

This color combination is very effective, both cognitively and aesthetically. The hues and
values mean something with respect to the data, and the coding is very easy to follow—
you hardly even need the legend after you’ve looked at it once. Aesthetically, the whole
thing has a layered richness that isn’t garish, as rainbow hues would have been. And in U.S.
culture, people understand light blues and pinks as “baby” colors, so the emotional and
cultural connection is there, too. See http://babynamewizard.com.

Figure 11-18. Baby Name Wizard

Figure 11-19 shows two websites that make very restrained use of color. The first balances
hot and cool colors, while the second uses a single color for most of the design, reserving
the hot orange color to accent the call-to-action buttons.

506  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-19. OnlineMBARankings.com and AdLucent.com

In other libraries

http://quince.infragistics.com/Patterns/Few%20Hues.aspx

http://quince.infragistics.com/Patterns/Few%20Hues.aspx

The Patterns  507 

Corner Treatments

Figure 11-20. JetBlue

What

Instead of using ordinary right angles, use curves or diagonals for some of the interface’s
box corners. Make these corner treatments consistent across the interface.

Use when

The interface uses rectangular elements such as boxes, buttons, menus, and tabs.

Why

The repetition of visual motifs helps unify a design. When you devise a single “corner”
motif and use it consistently in many places, it gives a distinctive look to the whole design.
It’s certainly less boring than ordinary right-angled corners.

How

Many websites use curved corners. Others use diagonal lines, and a few use cutouts. What
you choose depends on the overall look of your site. Do you have a logo, an image, or a
font that has eye-catching visual elements to it? Use one of those visual elements. Are you
going for something soothing (as curves often are), edgy, or energetic? Try out several
different ideas.

508  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Not all of the rectangular elements in the interface need to use corner treatments—don’t
use too much of a good thing. But group boxes or panels usually do, and tabs commonly
are done this way, too. If you use corner treatments on one element in a repeated group,
do them all for consistency.

Furthermore, not every corner on a given box needs to use a corner treatment. Sometimes
two opposing corners get it, such as the upper right and lower left. Sometimes it’s just one
corner, usually the upper left or upper right.

Everywhere the element is repeated, make sure it resembles the others. In other words,
curved corners should use the same type of curve (though not necessarily the same ra-
dius). Angles should all be the same angle—don’t mix a 45-degree angle motif with a
20-degree angle, for instance. Also, curved and right angles tend to mix badly on visually
busy sites. Use Corner Treatments this with care.

Examples

The JetBlue website in Figure 11-20 at the top of the pattern repeats its curved corners all
over the site: in menu bars, the main content box, tabs, and buttons. Pandora, shown in
Figure 11-21, does the same, even for “callout” pop ups containing lyrics.

In other libraries

http://quince.infragistics.com/Patterns/Corner%20Treatments.aspx

Figure 11-21. Pandora

http://quince.infragistics.com/Patterns/Corner%20Treatments.aspx

The Patterns  509 

The Getty Museum’s site in Figure 11-22 uses bars across the tops of its content boxes,
and curves on the bottom corners. (The tabs also use curved corners, which is common.)

Figure 11-22. Getty.org

Borders That Echo Fonts

Figure 11-23. A MoMA online exhibit from 2002

510  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

What

When drawing borders and other lines, use the same color, thickness, and curves used by
one of the design’s major fonts.

Use when

Your design contains a font carefully chosen for its visual effect, such as the font used in
headlines, a title, or a logotype.

Why

The repetition of visual motifs helps unify a design. Fonts and borders work at similar
scales in a design—only a few pixels wide—and when they reinforce each other visually,
their effect is magnified. When they clash (especially if you use many different kinds of
borders), their contributions are weakened.

How

First, pick a font from your design. Title and headline fonts often work well, as do fonts
used in logotypes, but sometimes body text works, too. Observe its formal properties:
color, primary line thickness, texture, curve radius, angles, and spacing.

Now try to draw borders and lines that use some of those same properties. The color
should be the same as the font’s, though you can cheat on thickness and make borders
a bit thinner than the font’s strokes. If the font has pronounced circular curves, as many
modern sans-serif fonts do, try using that same curve radius on the border corners.

If it’s a particularly interesting font, ask yourself what makes it interesting. See if you can
pull those visual elements from the font into the rest of the design.

You don’t need to do this with all the borders in your interface, of course; just a few will
do, especially if the lines are thick. Be careful not to make borders too thick or coarse.
Thick borders make a strong statement, and after a point, they overwhelm whatever’s
inside them. Images usually can handle a thicker border than lightweight body text, for
instance. You can use single-pixel lines effectively in combination with heavier borders.

The Patterns  511 

Examples

In Figure 11-24, Mochimedia uses its logotype’s “fat curves” all over the design. The heavy
black border strongly echoes the logotype; so do the icons, the headline, the top menu bar,
and the cartoon character itself.

Figure 11-24. Mochimedia

Many sites use very thin borders and separator lines that reflect the visual qualities of a
body font. In Good’s website, shown in Figure 11-25, the one-pixel dotted lines echo the
delicate serifed body font in the sidebar. (A sans-serif font might be better echoed by a
solid line.)

512  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Figure 11-25. Detail of Good’s site

Dakine’s website from several years ago mixes it up a bit. In Figure 11-26, it uses many var-
ied design elements, but the jagged white lines do in fact echo the logo font. All together,
they lend a feeling of motion, tension, and edginess to the page, which was undoubtedly
what its designers were after—Dakine sells sports equipment to a young demographic.

Right angles in
corners

Thick lines with
diagonals

Thick diagonals around picture Logo uses diagonals and right angles

Yet more
diagonals

Figure 11-26. Dakine

The Patterns  513 

Hairlines

Figure 11-27. Front page of HermitageMuseum.org

What

Use one-pixel-wide lines in borders, horizontal rules, and textures.

Use when

You want a refined and sophisticated look to your interface.

How

Here are some of the many ways you can use hairlines in an interface:

•	 To demarcate Titled Sections by underlining the titles

•	 To separate different content areas, either with horizontal or vertical rules or with
closed borders

•	 As guidelines to lead the eye through a composition

•	 Between areas of different background colors to clarify the boundary between them

514  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

•	 In textures, such as a grid or a block of horizontal lines

•	 In icons, images, and drawn graphics

•	 As borders around controls, such as buttons

Hairlines look particularly good when placed near very thin sans-serif fonts. Remember
that a gray line looks thinner than a black line, even if both are a single pixel wide. The same
is true for other lighter colors, such as the teal used in Figure 11-27 at the top of this pattern.
The less contrast between the line and its background, the thinner and lighter it appears.

Another way you can lighten a hairline—and add another texture while you’re at it—is to
make it a dotted line instead of a solid line. As of this writing, finely drawn dotted lines are
becoming common on the Web, even as underlines for links.

A trick to increase the tension and edginess in a design is to push a hairline flush up
against the bottom of a line of text. Design 8 of the CSS Zen Garden designs does exactly
that with its title and headlines (see Figure 11-8, back in the introduction).

Examples

The website in Figure 11-28 shows hairlines used in many places: as a faint grid in the back-
ground, as horizontal rules, and as very lightweight borders around the boxes. The hairlines
work with the background texture and excellent typography to create a very rich look.

Figure 11-28. Colly.com

The Patterns  515 

Likewise, hairlines are used in several ways in the design studio site shown in Figure 11-29.
Note their usage in the logo, in the dotted separator lines, and in the diagonal texture used
around the thumbnails and at the bottom of the page.

Figure 11-29. RibbonsOfRed.com

516  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

Contrasting Font Weights

Figure 11-30. TED

What

Use at least two contrasting fonts—one thin and lightweight, another heavier and darker—
to separate different levels of information and add visual interest.

Use when

Text makes up important elements on the page, and you want the page’s organization to
be very clear at first glance. You want the page to look dramatic.

Why

When two fonts differ in weight, they form a strong and vibrant visual contrast.
Aesthetically, contrast contributes to a dramatic and eye-catching look. High typographic
contrast, which includes size, texture, and color—but especially weight—guarantees that
your page will not look dull.

You can use this contrast to structure the text on the page. For instance, heavier-looking
letters can form titles and headlines, thus helping build a visual hierarchy. The bold text
in Figure 11-30 pulls the eye toward it. Thus, contrasting font weights contribute to the
cognitive perception of the page as much as the aesthetics. (See Chapter 4 for a discussion
of visual hierarchy.)

How

This pattern has many possible applications. This book already mentioned the use of bold
text for headlines, but applications might include:

•	 Creating very strong, magazine-like headlines and subheads

•	 Separating labels from data in a two-column listing

•	 Separating navigational links from information

•	 Indicating selection, such as selected links or list items

•	 Emphasizing words in a phrase

•	 Separating one word from another in a logotype

The Patterns  517 

If you’re using fonts that are larger than body text, make sure the contrast is strong enough
to be noticed. When the font family offers several weights, as does Helvetica Neue, pick
ones that are at least a couple of steps apart—if the contrast is weak, it looks accidental,
not intentional. (The same goes for other font attributes. If you make two text elements
different sizes, make them really different; if you want to mix font families, make sure they
don’t look too much alike!)

Examples

In Figure 11-31, a film site from the National Film Board of Canada uses three very differ-
ent font sizes in a harmonious and compact composition. Its drama and starkness reflect
the seriousness of the film’s subject.

Figure 11-31. Detail of Waterlife.nfb.ca

The playful design in Figure 11-32 has a more complex visual hierarchy, rendered
with many font styles and sizes. Contrasting Font Weights is used to emphasize the
“WORKFLOW” headline, the arrows, the column titles, and particular phrases within
the body text. The weighted phrases are not only a heavier font weight; they are also white,
while the surrounding body text is gray. This gives the phrases even more contrast against
the dark background, thus increasing their visual weight.

Figure 11-32. A page from KaleidoscopeApp.com

Finally, Figure 11-33 shows one of the most dramatic type size differences I have ever seen
on the Web. Because they are dark, the enormous headline letters remain in balance (sort
of) with the body text. Within the block of body text, Contrasting Font Weights is again used
for emphasized words and phrases; likewise for the URL in the upper left, which places a
heavier font next to a lighter one.

Figure 11-33. JonBrousseau.com

The Patterns  519 

Skins and Themes

Figure 11-34. Four sample Firefox themes

What

Open up the look-and-feel architecture of your application so that users and third parties
can design their own graphics and styles.

Use when

Your user base includes a large population of people who know your interface well.
For those people, the interface has relatively low cognitive requirements—it’s not used
in high-stress situations, for instance—so it’s not necessary to make all elements easily
recognizable.

Furthermore, these users like to tinker. They value style, and they are inclined to set soft-
ware preferences to suit their tastes.

Why

When people rearrange and customize their personal space, physical or virtual, they de-
rive a sense of ownership of that space. This is a basic human need (though not all people
act on it; many people are perfectly content with software’s “factory settings”). Changing
simple color and font preferences is one common way to customize someone’s software
environment, but Skins and Themes go far beyond color schemes and fonts.

There’s evidence all over the Internet that users really like themes. Actually, we’re talking
about two groups of users here: those who download and use themes, and those who not
only use them but also design them. Those who design them see themes as an opportu-
nity to be creative, and to get their work out into the public eye. Many are graphic artists.
These people may get to know your UI design very, very well.

In any case, there are numerous applications and web services out there that have skins
or themes, and the sheer number of user-designed themes is enormous. The number of
person-hours spent on these works is testimony to the power of the creative impulse. For
the designers, skinnable applications fulfill another basic human need: creativity.

520  Chapter 11:  Making It Look Good: Visual Style and Aesthetics

(The difference between a skin and a theme in this context is vague. Some applications
or sites use one, and some use the other. As of this writing, themes seems to be the term
of choice for the concept of user-designed interface styles, while the term skins appears to
apply more to physical skins on laptops or mobile devices. That wasn’t the case when the
first edition of this book was written.)

How

Exactly how to design and implement a skinnable application depends entirely on the UI
technologies you use, so it’s very hard to generalize anything here.

First, remember that any native Windows application can already be changed by a skin
or theme. Several popular browsers can be “themed” as well, as shown in Figure 11-34.

Second, themes for web services such as WordPress (see Figure 11-35) affect far more
than just the graphic styling shown on the blog pages. Their themes also determine how
blog posts are laid out, what content appears in the sidebars, and even what informa-
tion gets shown or hidden for each entry. Designing a UI architecture to support this is
hard, and beyond the scope of this book. I encourage you to look at existing examples of
themed applications and websites.

One objection that is sometimes raised about skins is that they make interfaces harder to
use. That’s true about many badly designed skins. Ask yourself, though: how much does
that matter? Does each application have to be cognitively perfect? (Look-and-feel defaults
aren’t perfect, though they’re certainly more usability-tested than skins are.) For an ap-
plication that someone already knows well and that doesn’t require high cognitive de-
mands, there’s a point at which its basic usability is “good enough” and personal aesthetic
preferences take over. When skins are available, people make that choice for themselves,
whether or not they’ve educated themselves about usability.

To an extent, you can—and should, as part of a designer’s responsibility—decide at which
level to permit theming and skinning. You may only allow colors, fonts, and backgrounds
to be changed. You may permit bitmap-level skinning that preserves layout while chang-
ing the look-and-feel of controls. Or you may allow full customizability; it’s up to you to
decide if that kind of freedom is likely to make the interface criminally hard to use.

I’m going to speculate that excellent application design—such as well-chosen functional-
ity, easily understood organizational models, appropriate navigation, good page layout,
and standard widgetry—can make an interface more resilient to bad themes. Design it as
well as you can, and then put it out there for people to customize at a level you decide is
appropriate. See what happens!

The Patterns  521 

Examples

Figure 11-35 shows four of the many themes available for WordPress blogs. Vast numbers
of themes are also available for other blogs and website systems, such as Blogger and
Drupal. Most such themes are further customizable by the end users (especially those
who know how to edit HTML and CSS).

Figure 11-35. Four WordPress themes

In other libraries

http://quince.infragistics.com/Patterns/Skins.aspx

http://quince.infragistics.com/Patterns/Skins.aspx

References

Websites
These are the online pattern libraries or collections that served as references for this book.
Some well-known patterns appear to be duplicated in several libraries, but each author
writes and illustrates them differently. You may find insight into some of this book’s pat-
terns by reading their counterparts in these collections.

The Yahoo! Design Pattern Library:
http://developer.yahoo.com/ypatterns/

User Interface Design Patterns:
http://ui-patterns.com

Patternry:
http://patternry.com

Martijn van Welie’s Patterns in Interaction Design:
http://welie.com/patterns

Quince:
http://quince.infragistics.com

The Design of Sites book site:
http://www.designofsites.com/design-patterns/

Designing Web Interfaces book site:
http://designingwebinterfaces.com/explore

Designing Social Interfaces book site:
http://www.designingsocialinterfaces.com/patterns/Main_Page

Interface Design Patterns (emphasis on infographics):
http://patternbrowser.org

Design4Mobile:
http://design4mobile.com

http://developer.yahoo.com/ypatterns/
http://ui-patterns.com
http://patternry.com
http://welie.com/patterns
http://quince.infragistics.com
http://www.designofsites.com/design-patterns/
http://designingwebinterfaces.com/explore
http://www.designingsocialinterfaces.com/patterns/Main_Page
http://patternbrowser.org
http://design4mobile.com

524  References

Endeca User Interface Design Pattern Library (emphasis on search):
http://patterns.endeca.com

Peter Morville’s search and search-related patterns:
http://www.flickr.com/photos/morville/collections/72157603785835882/

Usability.gov provides a uniquely evidence-based library of interface design guidelines
and recommendations. While not a pattern library as such, it is a valuable reference:
http://usability.gov/guidelines/index.html

The following websites are not pattern collections, but they do contain nice sets of general
design examples. I use them when I needed examples or inspiration:

The GUIdebook Gallery:
http://www.guidebookgallery.org/

Pattern Tap (not the kinds of “patterns” described in this book):
http://patterntap.com/

Vandelay Design has many pages full of lovely web design examples, including e-commerce,
nonprofits, churches, magazines, design portfolios, interesting navigation, and corporate
websites. I refer you to only one of them here, and you can find the full list on this page:
http://vandelaydesign.com/blog/galleries/corporate-websites/

Books
If you’re looking for more depth than this book can provide, the following list can offer you
some good starting points. Obviously, there are far more excellent design books than can
be listed here; these constitute a “best of” list that you can use to branch out and find more
references. The list starts with general UI design books, and then lists some books on spe-
cific topics, such as graphic design, forms, information graphics, social media, and search:

Designing Web Interfaces: Principles and Patterns for Rich Interaction by Bill Scott and
Theresa Neil (O’Reilly, 2009)

The Design of Sites: Patterns for Creating Winning Web Sites, Second Edition, by Douglas K.
van Duyne, James A. Landay, and Jason I. Hong (Prentice Hall, 2006)

Designing for Interaction: Creating Innovative Applications and Devices, Second Edition,
by Dan Saffer (New Riders Press, 2009)

Don’t Make Me Think: A Common Sense Approach to Web Usability, Second Edition, by
Steve Krug (New Riders Press, 2005)

About Face 3: The Essentials of Interaction Design by Alan Cooper, Robert Reimann, and
David Cronin (Wiley, 2007)

The Design of Everyday Things by Donald Norman (Basic Books, 1998)

http://patterns.endeca.com
http://www.flickr.com/photos/morville/collections/72157603785835882/
http://usability.gov/guidelines/index.html
http://www.guidebookgallery.org/
http://patterntap.com/
http://vandelaydesign.com/blog/galleries/corporate-websites/

References  525 

Information Architecture for the World Wide Web: Designing Large-Scale Web Sites by
Peter Morville and Louis Rosenfeld (O’Reilly, 2006)

Universal Principles of Design: 125 Ways to Enhance Usability, Influence Perception,
Increase Appeal, Make Better Design Decisions, and Teach through Design, Second
Edition, by William Lidwell, Kritina Holden, and Jill Butler (Rockport Publishers, 2010)

The Non-Designer’s Design Book, Third Edition, by Robin Williams (Peachpit Press, 2008)

Emotional Design: Why We Love (or Hate) Everyday Things by Donald Norman (Basic
Books, 2005)

Web Form Design: Filling in the Blanks by Luke Wroblewski (Rosenfeld Media, 2008)

Forms that Work: Designing Web Forms for Usability by Caroline Jarrett (Morgan
Kaufmann, 2008)

Defensive Design for the Web: How to improve error messages, help, forms, and other crisis
points by Matthew Linderman and Jason Fried (New Riders Press, 2004)

The Visual Display of Quantitative Information, Second Edition, by Edward R. Tufte
(Graphics Press, 2001)

Envisioning Information by Edward R. Tufte (Graphics Press, 1990)

Visual Explanations: Images and Quantities, Evidence and Narrative by Edward R. Tufte
(Graphics Press, 1997)

Information Dashboard Design: The Effective Visual Communication of Data by Stephen
Few (O’Reilly, 2006)

Now You See It: Simple Visualization Techniques for Quantitative Analysis by Stephen Few
(Analytics Press, 2009)

Designing Social Interfaces: Principles, Patterns, and Practices for Improving the User
Experience by Christian Crumlish and Erin Malone (O’Reilly and Yahoo! Press, 2009)

Designing for the Social Web by Joshua Porter (New Riders Press, 2008)

Search Patterns: Design for Discovery by Peter Morville and Jeffery Callender (O’Reilly,
2010)

And finally, here are the classic patterns books that started the whole concept:

The Timeless Way of Building by Christopher Alexander (Oxford University Press, 1979)

A Pattern Language by Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel (Oxford University Press, 1977)

Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard
Helm, Ralph Johnson, and John M. Vlissides (Addison-Wesley Professional, 1994)

Index

A
About.com website

Feature, Search, and Browse pattern and,
32, 33

Accordion pattern
about, 159–163
Collapsible Panels pattern and, 164
List Inlay pattern and, 207, 209
Module Tabs pattern and, 156
navigation considerations, 79
page layout considerations, 136, 140
Titled Sections pattern and, 154
Two-Panel Selector pattern and, 200

actions and commands
about, 245
best practices, 239
common functionality considerations, 239
common renderings, 240–242
creative use of, 242–244
GarageBand example, 242–244
invisible, 241
labeling actions, 254
reversing, 271–275
structuring actions, 254
suggested interface goals, 239
undoable, 272

action and command patterns
Action Panel, 252–256
Button Groups, 246–248
Cancelability, 245, 269–271
Command History, 245, 275–277
Hover Tools, 249–252
Macros, 245, 278–280
Multi-Level Undo, 245, 271–275
Preview, 245, 263–266
Progress Indicator, 245, 266–268

Prominent “Done” Button, 245, 257–261
Smart Menu Items, 245, 261–263

Action Button pattern, 261
Action Panel pattern

about, 252–256
common renderings, 241
Hover Tools pattern and, 250
labeling actions, 254
reasons for using, 253
structuring actions, 254

activity streams, 36
ad blindness, 134
AdLucent.com website, 506
Adobe AIR, 270
Adobe Bridge, 42, 43
Adobe CS5, 120
Adobe Fireworks, 89
Adobe Flash Builder

Button Groups pattern and, 247, 248
Canvas Plus Palette pattern and, 53

Adobe Illustrator
Alternative Views pattern and, 65, 66
Smart Menu Items pattern and, 262

Adobe Photoshop
Canvas Plus Palette pattern and, 50, 51, 53
color in visual design and, 488
Command History pattern and, 277
Dropdown Chooser pattern and, 381
Good Defaults pattern and, 387
Macros pattern and, 278
Movable Panels pattern and, 172
Multi-Level Help pattern and, 73
Multi-Level Undo pattern and, 271, 272
Overview Plus Detail pattern and, 297
Streamlined Repetition pattern and, 19
Structured Format pattern and, 360

528  Index

Apple iPad, 88
associative navigation, 80, 85
Autocompletion pattern

about, 356, 375–379
form design and, 342
mobile device design and, 443
Responsive Enabling pattern and, 184
Same-Page Error Messages pattern and, 389

AutoTrader website, 179, 181
axes (information graphics), 294, 328–331

B
Baby Name Wizard, 505
backgrounds

Deep Background pattern and, 499–503
images as, 502
visual design considerations, 497

bacterium, genomic chart, 327
BBN Cornerstone package, 312–315
behavioral patterns. See also human behavior

Changes in Midstream, 12
Deferred Choices, 12
Habituation, 14–15
Incremental Construction, 14
Instant Gratification, 10
Keyboard Only, 20
Microbreaks, 16, 35
Other People’s Advice, 21
Personal Recommendations, 22
Prospective Memory, 18
Safe Exploration, 9
Satisficing, 11
Spatial Memory, 17
Streamlined Repetition, 19

Best Western website, 464
Bing website, 468
Blitzer, Wolf, 404
Blogger website

Input Hints pattern and, 366, 367
Password Strength Meter pattern and, 373
Recent Chatter pattern and, 439
Skins and Themes pattern and, 521

blogging
Content Leaderboard pattern and, 434
News Box pattern and, 430
Recent Chatter pattern and, 438–440, 439
Social Links pattern and, 424–426
Specialized Streams pattern and, 419–423
Timing Strategy pattern and, 417, 418

affordances in interface design, 244
Ahlberg, Christopher, 311
AIGA website, 91, 92, 212, 213
Aldrin, Buzz, 461
Alexander, Christopher, xix
Alphabet Scroller pattern

about, 230–231
information graphics and, 295

alternating row colors, 224
Alternative Views pattern

about, 30, 64–67
information graphics and, 295
providing tools to create things, 29
showing one single thing, 27

Amazon website
Autocompletion pattern and, 375
Bottom Navigation pattern and, 456, 457
Carousel pattern and, 217
Feature, Search, and Browse pattern and,

31, 32, 33
List Inlay pattern and, 209
Other People’s Advice pattern and, 21
Settings Editor pattern and, 63
Sign-in Tools pattern and, 116
Titled Sections pattern and, 154

American Airlines website, 260
American Red Cross website

Fat Menus pattern and, 109
Inverted Nano-pyramid pattern and, 415
News Box pattern and, 430
Repost and Comment pattern and, 409
Social Links pattern and, 425
Timing Strategy pattern and, 418

Animated Transition pattern
about, 86, 127–129
Hover Tools pattern and, 250
information graphics and, 295
List Inlay pattern and, 207
Local Zooming pattern and, 318

Annotated Scrollbar pattern
about, 86, 124–126
Alphabetical Scroller pattern and, 230
Carousel pattern and, 218
information graphics and, 295

Apple Corporation
brand loyalty and, 479
Carousel pattern and, 218
Input Prompt pattern and, 370

Index  529 

Bly, Robert, 414
Boing Boing website

Conversation Starters pattern and, 413
Recent Chatter pattern and, 438–440
Sharing Widget pattern and, 428

bookmarks
Deep-linked State pattern and, 101
navigation considerations, 84

borders
Borders That Echo Fonts pattern and,

510–512
Hairlines pattern and, 513
typography and, 510
visual design considerations, 497

Borders That Echo Fonts pattern
about, 498, 510–512
desktop applications and, 497
repeated visual motifs, 496

Boston.com website
mobile device design and, 446, 447
Thumbnail-and-Text List pattern and, 460

Boston Globe website, 119
Bottom Navigation pattern, 448, 457–458
brands

Bottom Navigation pattern and, 457
Conversation Starters pattern and, 411
importance of identity, 479
online communities and, 394
Personal Voices pattern and, 403
promoting, 393
Social Links pattern and, 424
Streamlined Branding pattern and, 474–476
visual style and, 478

Breadcrumbs pattern
about, 77, 86, 121–123
Escape Hatch pattern and, 104
Feature, Search, and Browse pattern and, 32
Sequence Map pattern and, 118
Settings Editor pattern and, 61
Visual Framework pattern and, 143

browsers. See web browsers
browsing. See navigation
Button Groups pattern

about, 246–248
Picture Manager pattern and, 40, 41

buttons
common renderings, 240
form design considerations, 345–355
Social Links pattern and, 424

C
California Stimulus Map, 302
Cancelability pattern

about, 245, 269–271
Progress Indicator pattern and, 267

Canvas Plus Palette pattern
about, 29, 50–54
Movable Panels pattern and, 168, 172
navigation considerations, 83
providing tools to create things, 28

Card Stack pattern, 157
Carousel pattern

about, 215–219
Alternative Views pattern and, 65
Filmstrip pattern and, 453
list display considerations, 195
Many Workspaces pattern and, 70
mobile device design and, 448

Cartifact website, 319, 320
Cascading Lists pattern

about, 232–234
Alternative Views pattern and, 65
form design and, 347, 348
list display considerations, 197
navigation considerations, 288
organizational model for, 283
Tree Table pattern and, 235
Two-Panel Selector pattern and, 200

case studies, 5
Center Stage pattern

about, 140, 145–148
Action Panel pattern and, 253
Collapsible Panels pattern and, 164, 165
Content Leaderboard pattern and, 435
Feature, Search, and Browse pattern and, 31
form design and, 357
One-Window Drilldown pattern and, 204

Changes in Midstream pattern, 12
Chipotle website, 476
Chrome developer tools

Accordion pattern and, 162
Annotated Scrollbar pattern and, 126
Autocompletion pattern and, 378
Breadcrumbs pattern and, 123

Circos website, 324, 327
citation patterns, 326
Clear Entry Points pattern

about, 78, 87–89
navigation considerations, 83, 84

530  Index

Sharing Widget pattern and, 427
social media principles and, 397

content organization. See organizing content
context menus

common renderings, 240
Hover Tools pattern and, 250

continuity (Gestalt principle)
about, 139
information graphics considerations, 283
page layout considerations, 135
Right/Left Alignment pattern and, 174
Row Striping pattern and, 221

Contrasting Font Weights pattern, 498,
516–518

controls. See also form and control patterns;
form design

collecting text input, 350
for constructing ordered lists, 350
for constructing unordered lists, 349
for dates and times, 355
for entering numbers, 352, 353
for entering subranges, 354
for selecting many of N items, 348
for selecting one of N items, 346, 347
for selecting one of two options, 345

Conversation Starters pattern
about, 410–413
Editorial Mix pattern and, 400
Repost and Comment pattern and, 408
social media principles and, 395

Cooper, Alan, 272, 363
Cooper, Anderson, 404
coordinated views, defined, 313
coplot, defined, 335
Copyblogger website

Inverted Nano-pyramid pattern and, 414
Social Links pattern and, 424, 425

Corner Treatments pattern
about, 498, 507–509
desktop applications and, 497
repeated visual motifs, 496

Cover Flow carousel, 218
Craigslist website, 90, 92
crowdsourcing, 411, 435
Crumlish, Christian, 394
Csikszentmihalyi, Mihaly, 14
CSS Zen Garden website

angles and curves in, 492
color in visual design, 489
cultural references in visual design, 495

Cleveland, William, 335
CLIs (command-line interfaces), 242
Closable Panels pattern, 161
closure (Gestalt principle)

about, 139
Button Groups pattern and, 247
page layout considerations, 134, 136
Prominent “Done” Button pattern and, 257
Row Striping pattern and, 221

CNET website, 32
CNN website

Accordion pattern and, 162
Alternative Views pattern and, 66, 67
Grid of Equals pattern and, 150, 151
Personal Voices pattern and, 404, 405
Social Links pattern and, 424
Specialized Streams pattern and, 420, 421

Collapsible Panels pattern
about, 164–168
Accordion pattern and, 160
Action Panel pattern and, 255
Animated Transition pattern and, 127
Canvas Plus Palette pattern and, 51
Dashboard pattern and, 46
Module Tabs pattern and, 156
Multi-Level Help pattern and, 72
page layout considerations, 140
Picture Manager pattern and, 40
Titled Sections pattern and, 154

collective intelligence, 394
Colly.com website, 514
color

backgrounds and, 500
Few Hues, Many Values pattern and,

504–506
Password Strength Meter pattern and, 372
Same-Page Error Messages pattern and, 389
Treemap pattern and, 338
in visual design, 488–489, 497

color-block technique, 220
Command History pattern

about, 245, 275–277
Macros pattern and, 278, 279
Multi-Level Undo pattern and, 274

command-line interfaces (CLIs), 242
Command pattern, 245
Constantine, Larry, 274
Content Leaderboard pattern

about, 434–437
navigation considerations, 85

Index  531 

Deep-linked State pattern
about, 101–103
navigation considerations, 84
Personal Recommendations pattern and, 22
showing one single thing, 27

Deferred Choices pattern
about, 12
Prospective Memory pattern and, 19

Delicious website
collective intelligence and, 394
Deep-linked State pattern and, 101
Sharing Widget pattern and, 427
Social Links pattern and, 424
Specialized Streams pattern and, 422

Design For Mobile pattern library, xix, 446
desktop applications, visual design and,

496–498
Detail Inlays pattern, 209
Diagonal Balance pattern

about, 141, 176–178
page layout considerations, 137

Dialog Inlays pattern, 209
Dialog Overlay pattern, 100
Digg website

News Stream pattern and, 36
Pagination pattern and, 226
Sharing Widget pattern and, 427
social media principles and, 395
Treemap pattern and, 340

direct observation, 5
Directory Navigation pattern, 94
disabilities, visual design and, 497
Dopplr website, 378, 379
double-clicking on items, 241
drag-and-drop action, 242
drill-down technique

information graphics considerations, 288
Treemap pattern and, 338

Dropdown Chooser pattern
about, 356, 380–383
form design and, 353, 355
Hover Tools pattern and, 252

drop-down menus
common renderings, 240
Hover Tools pattern and, 250
Smart Menu Items pattern and, 262

Drupal.org website
Liquid Layout pattern and, 188
Pagination pattern and, 227
Skins and Themes pattern and, 521

dwell time, 424

Hairlines pattern and, 514
images in visual design, 494
spaciousness and crowding in, 492
texture and rhythm in, 493, 494
typography in visual design, 491
visual style and, 479–487

CulinaryCulture.com website, 370, 371
cultural references in visual design, 495

D
Dakine website, 512
Dashboard pattern

about, 46–49
additional information, 49
Movable Panels pattern and, 168

Data Brushing pattern
about, 291, 294, 295, 312–315
Dynamic Queries pattern and, 309

data dimensions
preattentive variables and, 286
Small Multiples pattern and, 332–335
Treemap pattern and, 336–340

data presentation patterns. See also information
graphics

Data Brushing, 291, 294, 295, 312–315
Data Spotlight, 294, 303–307
Datatips, 294, 299–303
Dynamic Queries, 291, 308–311
Local Zooming, 288, 295, 316–320
Multi-Y Graph, 283, 328–331
Overview Plus Detail, 288, 296–299
Radial Table, 283, 323–327
Small Multiples, 332–335
Sortable Table, 283, 290, 320–322
Treemap, 283, 336–340
Tree Table, 283

Data Spotlight pattern
about, 294, 303–307
Datatips pattern and, 301
Radial Table pattern and, 325

Datatips pattern
about, 294, 299–303
Dashboard pattern and, 46
Data Spotlight pattern and, 303, 304
Local Zooming pattern and, 317

DateLens calendar, 316, 318
date/time controls, 355
Deep Background pattern

about, 498, 499–503
desktop applications and, 497

532  Index

dynamic indicators, 125
Dynamic Queries pattern

about, 291, 308–311
Data Brushing pattern and, 312
Radial Table pattern and, 325
Treemap pattern and, 337

E
eBay website

Fill-in-the-Blanks pattern and, 363, 364
Pagination pattern and, 227

Ecoki website, 502
Editorial Mix pattern

about, 399–402
Repost and Comment pattern and, 407
social media principles and, 395

Eigenfactor Project, 326
Emacs’ incremental-search facility, 229
email applications

Autocompletion pattern and, 375, 377
Content Leaderboard pattern and, 434, 435
Forgiving Format pattern and, 359
Infinite List pattern and, 462, 463, 464
Input Hints pattern and, 366, 368
List Builder pattern and, 383
New-Item Row pattern and, 236
One-Window Drilldown pattern and, 202
Password Strength Meter pattern and, 371
Richly Connected Apps pattern and, 472,

473
Sharing Widget pattern and, 427
Smart Menu Items pattern and, 261
Social Links pattern and, 424
Timing Strategy pattern and, 417
Two-Panel Selector pattern and, 200

EMS website, 30, 32
encoding

defined, 286
example, 287
Small Multiples pattern and, 332
Treemap pattern and, 337

Engadget website, 435, 436
EngagementDB, 422
Epicurious website

Editorial Mix pattern and, 398
Generous Borders pattern and, 466

error messages, 388–392
Escape Hatch pattern

about, 78, 104–106
design considerations, 11

Modal Panel pattern and, 98
navigation considerations, 84
Wizard pattern and, 57

ESPN website
Filmstrip pattern and, 453
Vertical Stack pattern and, 450, 451

Excel (Microsoft). See Microsoft Office
applications

F
Facebook website

background information, 393
Conversation Starters pattern and, 411
Editorial Mix pattern and, 398, 399, 401
Infinite List pattern and, 463
Inverted Nano-pyramid pattern and, 413,

415
News Stream pattern and, 34, 35, 38, 39, 68
Personal Recommendations pattern and, 23
Repost and Comment pattern and, 408
Richly Connected Apps pattern and, 471,

472
Settings Editor pattern and, 62
Sharing Widget pattern and, 426, 427, 428
Social Links pattern and, 424–426
social media principles and, 395
Specialized Streams pattern and, 419–423,

420
Thumbnail Grid pattern and, 214
Timing Strategy pattern and, 416–418

faceted browsing, 122
Fandango website, 475
Fat Footer pattern, 114
Fat Menus pattern

about, 106–109
navigation considerations, 81, 85
Sitemap Footer pattern and, 110, 111

Feature, Search, and Browse pattern
about, 29, 31–33
showing lists of things, 28

feedback mechanisms, 396
Few Hues, Many Values pattern

about, 504–506
color in visual design, 489

Few, Stephen, 49
Fidelity.com website, 447
Fill-in-the-Blanks pattern

about, 356, 362–364
Dynamic Queries pattern and, 310
form design and, 354

Index  533 

Password Strength Meter, 342, 371–374
Same-Page Error Messages, 342, 388–392
Structured Format, 342, 356, 360–361

form design
control selection factors, 343, 344–355
gatekeeper forms, 357
principles of, 341–343
Prominent “Done” Button pattern and, 258
usability testing and, 343

Formulate Information Design, 221
Foursquare website

collective intelligence and, 394
Data Brushing pattern and, 314

FriendFeed media site, 35
fully connected navigational model, 81

G
Gamma, Erich, xix
GarageBand application, 242–244
gatekeeper forms, 357
Generous Borders pattern, 465–466
Gestalt principles

about, 139
Button Groups pattern and, 246
information graphics considerations, 283–287
page layout considerations, 134, 136
Right/Left Alignment pattern and, 174
Row Striping pattern and, 221

Getty Museum website, 509
global navigation

defined, 80
Fat Menus pattern and, 107
Liquid Layout pattern and, 85

Gmail website
Infinite List pattern and, 463, 464
Input Hints pattern and, 366
Password Strength Meter pattern and, 371
Sign-in Tools pattern and, 116
Smart Menu Items pattern and, 262, 263

GNOME application themes., 496
Good Defaults pattern

about, 356, 385–387
Deferred Choices pattern and, 13
form design and, 342
Input Hints pattern and, 365
Input Prompt pattern and, 370
New-Item Row pattern and, 237
Same-Page Error Messages pattern and, 389
Wizard pattern and, 57

Good website, 511, 512

Filmstrip pattern
about, 448, 452–453
Carousel pattern and, 217

filters
Adobe Bridge support, 42
navigation and, 287–288
Smart Menu Items pattern and, 262
viewing data selectively, 291–293

fisheye lenses, 316, 317
Fitbit example, 45
flat lists, 216
flat navigation model, 83
Flickr website

background information, 393
browsing interface, 42, 43
Carousel pattern and, 218
Data Brushing pattern and, 314
List Builder pattern and, 384
Loading Indicators pattern and, 469
News Box pattern and, 432
Other People’s Advice pattern and, 21
Pagination pattern and, 227
Picture Manager pattern and, 44
Progress Indicator pattern and, 267
Pyramid pattern and, 95
Sign-in Tools pattern and, 115
Sitemap Footer pattern and, 114
Social Links pattern and, 424
Specialized Streams pattern and, 422
Timing Strategy pattern and, 417

Fling, Brian, 443
flow, state of, 14, 278
fonts. See typography in visual design
Ford website

News Box pattern and, 433
Social Links pattern and, 425, 426

Forgiving Format pattern
about, 356, 357–359
form design and, 352, 355
Input Hints pattern and, 365
Same-Page Error Messages pattern and, 389
Structured Format pattern and, 360

form and control patterns
Autocompletion, 356, 375–379
Dropdown Chooser, 356, 380–383
Fill-in-the-Blanks, 356, 362–364
Forgiving Format, 356, 357–359
Good Defaults, 342, 356, 385–387
Input Hints, 342, 356, 364–368
Input Prompt, 356, 369–371
List Builder, 356, 383–384

534  Index

Google website
Autocompletion pattern and, 378
Bottom Navigation pattern and, 457
Editorial Mix pattern and, 401, 402
Pagination pattern and, 226
Personal Voices pattern and, 405, 406
Specialized Streams pattern and, 420, 422
Text Clear Button pattern and, 468
Thumbnail-and-Text List pattern and, 461

Google Analytics, 48, 49
Google Books

Carousel pattern and, 217
Deep-linked State pattern and, 102

Google Docs
Button Groups pattern and, 246
Center Stage pattern and, 147
Liquid Layout pattern and, 188, 189
Responsive Disclosure pattern and, 181, 182
text editor, 147

Google Finance, 298
Google Images

Bottom Navigation pattern and, 458
Local Zooming pattern and, 318, 319
Thumbnail Grid pattern and, 214

Google Labs, 105
Google Maps

Alternative Views pattern and, 64
Collapsible Panels pattern and, 163, 165
Datatips pattern and, 302
Escape Hatch pattern and, 105
navigation considerations, 288

Google News
News Stream pattern and, 36, 38
Treemap pattern and, 339
Vertical Stack pattern and, 449

Google Public Data Explorer
Data Spotlight pattern and, 303
Dynamic Queries pattern and, 308

Google Reader
List Inlay pattern and, 207, 208
News Stream pattern and, 38, 39

Google Trends, 329
Grid of Equals pattern

about, 140, 149–152
list display considerations, 195
repeated visual motifs and, 496
Thumbnail Grid pattern and, 211

Grooveshark website
Hover Tools pattern and, 250, 251
Progress Indicator pattern and, 268

Gunn, Tim, 410

H
Habituation pattern, 14–15
Hairlines pattern

about, 498, 513–515
texture and rhythm in, 493

Hanks, Tom, 413
Hanna Andersson website

Same-Page Error Messages pattern and, 391
Sequence Map pattern and, 118
Thumbnail Grid pattern and, 210, 214

Helm, Richard, xix
Henry, Ed, 404
HermitageMuseum.org website, 513
Hive Group website

Dynamic Queries pattern and, 310
Treemap pattern and, 340

Home Link pattern, 106
Hong, Jason I., xix
Hotmail website, 368
Hover Tools pattern

about, 249–252
Action Panel pattern and, 253
common renderings, 241
Input Hints pattern and, 367
Multi-Level Help pattern and, 72

Hsieh, Tony, 402, 403
hub and spoke navigational model, 80
Huffington Post website, 423
Hulu website, 150, 227
human behavior. See also behavioral patterns

about, 8–9
basics of user research for, 4–6
motivation to learn and, 6–8
tool usage and, 2–3, 7–8

I
IA (information architecture)

defined, 25
list displays, 192

iBird Explorer, 461
IBM Corporation

Grid of Equals pattern and, 152
Many Eyes project, 102, 103, 301, 302
Personal Voices pattern and, 405, 406

iGoogle, 170, 171
Illustrator (Adobe)

Alternative Views pattern and, 65, 66
Smart Menu Items pattern and, 262

Image Browser pattern, 45

Index  535 

form design and, 342, 353, 354
Input Prompt pattern and, 369
Multi-Level Help pattern and, 72, 74
Password Strength Meter pattern and, 372,

373, 374
providing tools to create things, 29
Same-Page Error Messages pattern and, 389
Structured Format pattern and, 360

Input Prompt pattern
about, 356, 369–371
Forgiving Format pattern and, 358
form design and, 353, 354
Input Hints pattern and, 365
Multi-Level Help pattern and, 72, 74
New-Item Row pattern and, 237
Same-Page Error Messages pattern and,

389, 391
Structured Format pattern and, 361

Instant Gratification pattern
about, 10
Multi-Level Help pattern and, 72

interface design. See also specific patterns
accessing specific data values, 293–294
affordances, 244
basics of user research, 4–6
basis of, 1
information graphics considerations, 282
navigation considerations, 85
positive affect in, 477
progressive disclosure, 107, 164
recommendations, 244
tool usage and, 2–3, 7–8
understanding motivation to learn, 6–8
undo stacks, 273
visual style and, 478

interface idioms, xvi
Inverted Nano-pyramid pattern

about, 413–415
News Box pattern and, 431
social media principles and, 396

Inxight TableLens
Local Zooming pattern and, 317, 318
Sortable Table pattern and, 321, 322

iPad (Apple), 88
iPhone

Alphabetical Scroller pattern and, 231
Autocompletion pattern and, 378
Filmstrip pattern and, 452, 453
Generous Borders pattern and, 465, 466
Infinite List pattern and, 462, 463

images
as backgrounds, 502
visual design considerations, 494, 497

IMDb website
Generous Borders pattern and, 466
Other People’s Advice pattern and, 21
Thumbnail-and-Text List pattern and, 460,

461
Incremental Construction pattern

about, 14
Dynamic Queries pattern and, 309
Multi-Level Undo pattern and, 272

indicators
dynamic, 125
Loading Indicators pattern and, 468–470
Progress Indicator pattern and, 245,

266–268
static, 125

Infinite List pattern
about, 462–464
mobile device design and, 448
News Stream pattern and, 36

information architecture (IA)
defined, 25
list displays, 192

information graphics. See also data
presentation patterns

about, 294
accessing specific values, 293–294
defined, 281
design considerations, 282
Gestalt principles, 283–287
navigation and browsing, 287–288
organizational models, 282
preattentive variables, 283–287
searching and filtering, 291–293
sorting and rearranging data, 289–291
user’s goal, 282

information visualization
additional information, 299
“focus plus context” mantra, 287
organizational models, 282
radial graphics and, 324

Infragistics, 256
inline navigation, 80
Input Error Message pattern, 391
Input Feedback pattern, 391
Input Hints pattern

about, 356, 364–368
Forgiving Format pattern and, 358

536  Index

iPhone (continued)
List Inlay pattern and, 209
Loading Indicators pattern and, 468, 469,

470
One-Window Drilldown pattern and, 202
Richly Connected Apps pattern and, 470,

472, 473
Text Clear Button pattern and, 467
Thumbnail-and-Text List pattern and, 459,

460, 461
Thumbnail Grid pattern and, 214
Titled Sections pattern and, 154, 155
Touch Tools pattern and, 454, 455

iPhoto application
Action Panel pattern and, 252, 255
browsing interface, 42

iTunes
Button Groups pattern and, 247, 248
Cover Flow carousel, 218
Infinite List pattern and, 463
Row Striping pattern and, 222
Sign-in Tools pattern and, 117
Sortable Table pattern and, 320

iWeb application
Dropdown Chooser pattern and, 382
Module Tabs pattern and, 158

J
JAQK website, 141
JAWS screen reader, 498
JetBlue website

Corner Treatments pattern and, 507, 508
mobile device design and, 446, 447
Prominent “Done” Button pattern and, 259,

260
Row Striping pattern and, 220, 222
Streamlined Branding pattern and, 474, 475
Titled Sections pattern and, 152
Visual Framework pattern and, 143, 144

Johnson, Joshua, 152
Johnson, Ralph, xix
JonBrousseau.com website, 518
Jump to Item pattern

about, 228–229
Alphabetical Scroller pattern and, 230
information graphics and, 295
viewing data selectively, 292

K
KaleidoscopeApp.com website, 518
Kayak website

Autocompletion pattern and, 378
Good Defaults pattern and, 385, 387
List Inlay pattern and, 206
Modal Panel pattern and, 99
Pagination pattern and, 227
Prominent “Done” Button pattern and, 259,

260
Responsive Disclosure pattern and, 181

Keyboard Only pattern
about, 20
Picture Manager pattern and, 40, 41
Two-Panel Selector pattern and, 199

keyboard shortcuts
common renderings, 241
Macros pattern and, 278

Kitchen Table Math website, 438–440
Kobo website, 460, 461
Krug, Steve, 11

L
labels

form design and, 356
information graphics considerations, 293
Right/Left Alignment pattern and, 356

Landay, James A., xix
Last.fm website, 227
layering, defined, 286
layout grids, defined, 143
lazy loading, 463
legends (information graphics), 293
Levi’s website, 425
Lexus navigation system, 184, 185
lightbox effect, 98
Linked Multiples pattern, 315
linked views, defined, 313
Liquid Layout pattern

about, 141, 186–190
global navigation and, 85
Local Zooming pattern and, 317
Vertical Stack pattern and, 450

List Builder pattern
about, 356, 383–384
form design and, 349

list displays
about, 197
Infinite List pattern and, 462–464

Index  537 

Deep Background pattern and, 501
desktop applications and visual design, 496
Jump to Item pattern and, 228
Liquid Layout pattern and, 186, 187
Local Zooming pattern and, 318, 319
Modal Panel pattern and, 99, 100
Module Tabs pattern and, 158
Multi-Level Help pattern and, 73
One-Window Drilldown pattern and, 202
Progress Indicator pattern and, 266
Responsive Enabling pattern and, 184
Right/Left Alignment pattern and, 173, 175
Settings Editor pattern and, 59
Smart Menu Items pattern and, 261
Thumbnail Grid pattern and, 212
Tree Table pattern and, 234
Two-Panel Selector pattern and, 198
typography in visual design, 491

MacPaint application, 53
macro and micro readings, 296
Macros pattern

about, 245, 278–280
Streamlined Repetition pattern and, 19

Malone, Erin, 394
Many Eyes project (IBM), 102, 103, 301, 302
Many Workspaces pattern

about, 30, 68–70
Changes in Midstream pattern and, 12
News Stream pattern and, 35
Prospective Memory pattern and, 19
providing tools to create things, 28
showing one single thing, 27

MapQuest website
Grid of Equals pattern and, 151
Module Tabs pattern and, 155
Sitemap Footer pattern and, 114

maps. See also Google Maps; Sequence Map
pattern; Treemap pattern

Animated Transition pattern and, 127
navigation considerations, 78
pan-and-zoom technique and, 82

Marriott website, 215
Mashable website

Content Leaderboard pattern and, 435, 437
Infinite List pattern and, 463, 464
Repost and Comment pattern and, 406
Sharing Widget pattern and, 428, 429
Social Links pattern and, 425
Thumbnail-and-Text List pattern and, 460

Radial Table pattern and, 323–327
salient characteristics, 192–194
selecting controls for, 345–355
Thumbnail-and-Text List pattern and,

459–461
list display patterns

Alphabetical Scroller, 230–231
Carousel, 195, 215–219
Cascading Lists, 197, 232–234
Jump to Item, 228–229
List Inlay, 194, 206–209
New-Item Row, 237–238
One-Window Drilldown, 194, 202–205
Pagination, 224–227
Row Striping, 195, 220–224
Sortable Table, 197
Thumbnail Grid, 195, 210–215
Tree Table, 197, 235–236
Two-Panel Selector, 198–201

List Inlay pattern
about, 206–209
Hover Tools pattern and, 250
list display considerations, 194
News Stream pattern and, 36
One-Window Drilldown pattern and, 202,

203
Two-Panel Selector pattern and, 200

LiveJournal website, 361
Live Preview pattern, 266
Loading Indicators pattern, 468–470
Local Zooming pattern

about, 295, 316–320
Datatips pattern and, 300
navigation considerations, 288

Lockwood, Lucy, 274
logos

clickable on websites, 105
Loading Indicators pattern and, 469
Streamlined Branding pattern and, 474–476

Los Angeles Times website, 112
Lulu website, 32

M
Mac operating system

Action Panel pattern and, 254
Autocompletion pattern and, 377, 378
Cancelability pattern and, 270, 271
Cascading Lists pattern and, 197, 232, 233

538  Index

MATLAB application
Command History pattern and, 275
Movable Panels pattern and, 172
Multi-Level Help pattern and, 73
Multi-Y Graph pattern and, 330
Other People’s Advice pattern and, 21

menu bars
common renderings, 240
Hover Tools pattern and, 250
Smart Menu Items pattern and, 262

Menu Page pattern
about, 90–94
List Inlay pattern and, 207
navigational model for, 80
One-Window Drilldown pattern and, 203
Settings Editor pattern and, 63
Two-Panel Selector pattern and, 200

Mercedes-Benz website, 502, 503
Microbreaks pattern

about, 16
mobile device design and, 444
News Stream pattern and, 35

Microsoft Corporation
Fat Menus pattern and, 106
Forgiving Format pattern and, 359
List Builder pattern and, 383
Social Links pattern and, 425, 426
Specialized Streams pattern and, 422, 423

Microsoft Money 2000, 497
Microsoft Office applications

Accordion pattern and, 159
Alternative Views pattern and, 65, 66
Annotated Scrollbar pattern and, 125
Button Groups pattern and, 247, 248
Dropdown Chooser pattern and, 380, 382
Fill-in-the-Blanks pattern and, 363
Input Hints pattern and, 365, 366
Macros pattern and, 279, 280
Module Tabs pattern and, 157
Multi-Level Undo pattern and, 275
New-Item Row pattern and, 236, 238
Preview pattern and, 263
Row Striping pattern and, 222
Wizard pattern and, 58

Mini Cooper website
Diagonal Balance pattern and, 178
product configurator, 119
Sequence Map pattern and, 119

Mint.com website
Few Hues, Many Values pattern and, 503, 504
Same-Page Error Messages pattern and,

389, 390

Sign-in Tools pattern and, 116
Wizard pattern and, 57

MIT website, 91, 92
mobile devices

additional design information, 446
Autocompletion pattern and, 376
design approaches, 443–446
design challenges, 442–448
design considerations, 441
design examples, 446–447
design pattern overview, 448
Many Workspaces pattern and, 70
Menu Page pattern and, 90
navigation considerations, 80
organizing content and, 27
Thumbnail Grid pattern and, 214

mobile device patterns
Bottom Navigation, 448, 457–458
Filmstrip, 448, 452–453
Generous Borders, 465–466
Infinite List, 462–464
Loading Indicators, 468–470
Richly Connected Apps, 470–473
Streamlined Branding, 474–476
Text Clear Button, 467–468
Thumbnail-and-Text List pattern and,

459–461
Touch Tools, 448, 454–456
Vertical Stack, 445, 448, 449–451

Mochimedia website, 511
Modal Panel pattern

about, 78, 97–100
Changes in Midstream pattern and, 12
Escape Hatch pattern and, 104
form design and, 357
navigation considerations, 83, 84, 105
Pyramid pattern and, 96

Module Tabs pattern
about, 156–159
Accordion pattern and, 160
Canvas Plus Palette pattern and, 51
Collapsible Panels pattern and, 164
Content Leaderboard pattern and, 435
Movable Panels pattern and, 172
navigation considerations, 79
page layout considerations, 136, 140
Titled Sections pattern and, 154
Visual Framework pattern and, 143

Mothering.com website, 227
motivation to learn, 6–8

Index  539 

navigation patterns
about, 86
Animated Transition, 86, 127–129
Annotated Scrollbar, 77, 86, 124–126
Breadcrumbs, 77, 86, 121–123
Clear Entry Points, 78, 83, 84, 87–89
Deep-linked State, 84, 101–103
Escape Hatch, 78, 84, 104–106
Fat Menus, 81, 85, 106–109
Menu Page, 80, 90–94
Modal Panel, 78, 83, 84, 97–100
Overview Plus Detail, 78
Pyramid, 82, 94–96
Sequence Map, 77, 78, 86, 118–120
Sign-in Tools, 85, 115–117
Sitemap Footer, 81, 85, 110–114

navigational models
associative navigation, 80, 85
bookmarks, 84
escape hatch, 84
flat, 83
fully connected, 81
global navigation, 80, 85, 107
hub and spoke, 80
inline navigation, 80
modal panel, 83
multi-level, 81
pan-and-zoom, 82
pyramid, 82
stepwise, 82
utility navigation, 80, 115

NBA.com website, 444
Neil, Theresa

Accordion pattern, 163
Blank Slate Invitation, 29
Dashboard pattern, 49
Dialog Overlay pattern, 100
list inlays, 209
Live Preview pattern, 266
Palette/Canvas screen layout, 54
transition patterns, 129
types of application structures, 26
Wizard pattern, 58

Netflix website, 105, 388
Netvibes website, 48
Newfangled.com website, 147
New-Item Row pattern

about, 237–238
form design and, 349

Movable Panels pattern
about, 168–173
Accordion pattern and, 160
Action Panel pattern and, 254
Collapsible Panels pattern and, 164
Dashboard pattern and, 46, 47
Module Tabs pattern and, 156
page layout considerations, 140
Spatial Memory pattern and, 17

MSNBC website, 124
MSN website, 373, 374
Mullet, Kevin, 177
Multi-Level Help pattern

about, 30, 71–76
Other People’s Advice pattern and, 22
user motivation to learn and, 8

multi-level navigational model, 81
Multi-Level Undo pattern

about, 245, 271–275
Command History pattern and, 276, 277
Macros pattern and, 278
Safe Exploration pattern and, 10

Multi-Y Graph pattern
about, 328–331
organizational model for, 283

Museum of Modern Art website
Borders That Echo Fonts pattern and, 509
Menu Page pattern and, 93

MySpace website
Sharing Widget pattern and, 427
Specialized Streams pattern and, 422

Mysteriously Dimmed Menu Items, 184

N
National Cancer Institute website, 289
National Film Board of Canada, 517
natural language output, 363
navigation

Bottom Navigation pattern and, 457–458
cognitive costs, 78
common techniques, 287–288
environmental clues and, 78
maps and, 78
performance costs, 79
responsive disabling, 184
signage and, 78
signposts and, 77
wayfinding and, 78
website design considerations, 85

540  Index

O’Reilly, Tim, 409
organizing content. See also information

graphics
about, 25, 29–30
Content Leaderboard pattern and, 435
facilitating single tasks, 29
high-level considerations, 26–29
providing tools for, 28
showing lists of things, 27
showing one single thing, 27
social media considerations, 400
treemap design considerations, 337

organizing content patterns
Alternative Views, 64–67
Canvas Plus Palette, 50–54
Dashboard, 46–49
Feature, Search, and Browse, 31–33
Many Workspaces, 68–70
Multi-Level Help, 71–76
News Stream, 34–39
Picture Manager, 40–45
Settings Editor, 59–63
Wizard, 55–58

Other People’s Advice pattern, 21
Overview Plus Detail pattern

about, 78, 288, 296–299
Annotated Scrollbar pattern and, 125
Local Zooming pattern and, 317
Sequence Map pattern and, 118

P
page layout

about, 140
dynamic displays, 140
showing element relationships, 134
visual flow, 136–139
visual hierarchy, 132–136

page layout patterns
Accordion, 136, 140, 159–163
Center Stage, 140, 145–148
Collapsible Panels, 140, 164–168
Diagonal Balance, 137, 141, 176–178
Grid of Equals, 140, 149–152
Liquid Layout, 141, 186–190
Module Tabs, 136, 140, 156–159
Movable Panels, 140, 168–173
Responsive Disclosure, 140, 141, 179–182
Responsive Enabling, 140, 141, 183–185
Right/Left Alignment, 137, 141, 173–175
Titled Sections, 140, 153–155
Visual Framework, 140, 142–145

News Box pattern
about, 430–434
Menu Page pattern and, 91
navigation considerations, 85
News Stream pattern and, 35
social media principles and, 397

Newsmap application, 339
News Stream pattern

about, 34–39
Content Leaderboard pattern and, 435
Many Workspaces pattern and, 68, 69
Microbreaks pattern and, 16
showing lists of things, 28
social media principles and, 395
Timing Strategy pattern and, 417

New York Times website
Carousel pattern and, 219
Content Leaderboard pattern and, 435, 436
Fill-in-the-Blanks pattern and, 362
Forgiving Format pattern and, 358
Multi-Y Graph pattern and, 328
Overview Plus Detail pattern and, 298
Pyramid pattern and, 95

NeXTSTEP File Viewer, 233, 234
Nielsen Norman Group, 446
Nike website, 149, 150
Nokia (company), 465
Norman, Donald, 477
NPR website, 457, 458
numbers, entering in forms, 352, 353

O
OneHourCourses.com website, 259
One-off Modes pattern, 51
One-Window Drilldown pattern

about, 202–205
Dashboard pattern and, 46
list display considerations, 194
List Inlay pattern and, 207
News Stream pattern and, 36
Picture Manager pattern and, 40–45
Settings Editor pattern and, 60
Two-Panel Selector pattern and, 199, 200,

201
online communities

brands and, 394
Breadcrumbs pattern and, 123
social media principles and, 397

OnlineMBARankings.com website, 506
Oracle website, 403
ordered lists, constructing, 350

Index  541 

Primary Action pattern, 261
Product Configurator pattern, 59
product configurators

defined, 59
Sequence Map pattern and, 119

Progress Indicator pattern
about, 245, 266–268
Cancelability pattern and, 269, 270

progressive disclosure, 107, 164
Prominent “Done” Button pattern

about, 245, 257–261
form design and, 357
page layout considerations, 137

property sheets, 344
Prospective Memory pattern

about, 18
Many Workspaces pattern and, 69

proximity (Gestalt principle)
about, 139
Action Panel pattern and, 253
Button Groups pattern and, 246
page layout considerations, 134
Right/Left Alignment pattern and, 174

pyramid navigational model, 82
Pyramid pattern

about, 94–96
navigation considerations, 82
One-Window Drilldown pattern and, 203
Overview Plus Detail pattern and, 298
Picture Manager pattern and, 40, 41, 43

Q
querying. See Dynamic Queries pattern;

searching

R
Radial Table pattern

about, 323–327
Data Spotlight pattern and, 306, 307
interpreting, 325
organizational model for, 283

Ravelry website, 203, 204
Raven vector editor, 51, 52
rearranging data, 289–291
Recent Chatter pattern

about, 438–440
navigation considerations, 85
Yahoo News! and, 439

Red Bull website, 432
reentrance property, 12

Pagination pattern
about, 224–227
showing lists of things, 28

Palette/Canvas screen layout, 54
pan-and-zoom navigational model, 82
Pandora website

Corner Treatments pattern and, 508
Sharing Widget pattern and, 428

Partners in Health website, 418
Password Strength Meter pattern

about, 356, 371–374
form design and, 342

patterns. See also specific patterns
additional collections, xix
general overview, xviii
usage suggestions, xxi

PayPal website, 358, 359
Perl commmunity website, 296
Personal Recommendations pattern

about, 22
Sharing Widget pattern and, 427
social media principles and, 396

Personal Voices pattern
about, 403–406
Editorial Mix pattern and, 400
social media principles and, 395

personas, 5
photostream sequence, 95
Picasa application

Accordion pattern and, 161
Action Panel pattern and, 255
browsing interface, 42, 43
One-Window Drilldown pattern and, 204,

205
Preview pattern and, 264, 265
Two-Panel Selector pattern and, 201

Picture Manager pattern
about, 29, 40–45
Action Panel pattern and, 255
One-Window Drilldown pattern and, 204
Pyramid pattern and, 94, 95
showing lists of things, 28
Two-Panel Selector pattern and, 201

pop-up menus
common renderings, 240
Hover Tools pattern and, 250

positive affect, 477, 478
PowerPoint (Microsoft). See Microsoft Office

applications
preattentive variables, 283–287, 313
Preview pattern, 245, 263–266

542  Index

Same-Page Error Messages pattern
about, 388–392
form design and, 342
Input Prompt pattern and, 370

San Francisco Crimespotting project
Data Spotlight pattern and, 301, 304, 305
Datatips pattern and, 301
Dynamic Queries pattern and, 311

Sano, Darrell, 177
sans-serif fonts, 490, 514
SAP website, 403
Satisficing pattern

about, 11
user motivation to learn and, 7

scales (information graphics), 294
Scott, Bill

Accordion pattern, 163
Blank Slate Invitation, 29
Dashboard pattern, 49
Dialog Overlay pattern, 100
list inlays, 209
Live Preview pattern, 266
Palette/Canvas screen layout, 54
transition patterns, 129
Wizard pattern, 58

Scribd website, 117
scroll-and-pan technique, 287
scrollbars, 124–126
searching

Autocompletion pattern and, 375
navigation and, 287–288
viewing data selectively, 291–293

security considerations
Macros pattern and, 279
Password Strength Meter pattern and,

371–374
Sequence Map pattern

about, 77, 78, 86, 118–120
Breadcrumbs pattern and, 121
Escape Hatch pattern and, 104
form design and, 357
Visual Framework pattern and, 143
Wizard pattern and, 57

Settings Editor pattern
about, 59–63
facilitating single tasks, 29
Movable Panels pattern and, 170
utility navigation and, 80

Sharing Widget pattern
about, 426–429
Content Leaderboard pattern and, 435
navigation considerations, 85

Reimann, Robert, 272, 363
REI website

Conversation Starters pattern and, 411, 412
Repost and Comment pattern and, 408
Sitemap Footer pattern and, 112
Vertical Stack pattern and, 450, 451

Repost and Comment pattern
about, 407–409
Editorial Mix pattern and, 400
Sharing Widget pattern and, 427
social media principles and, 395

responsive disabling, 184
Responsive Disclosure pattern

about, 141, 179–182
page layout considerations, 140
Responsive Enabling pattern and, 183
Spatial Memory pattern and, 17
Wizard pattern and, 57

Responsive Enabling pattern
about, 141, 183–185
page layout considerations, 140
Responsive Disclosure pattern and, 180
Wizard pattern and, 56

RibbonsOfRed.com website, 515
Richly Connected Apps pattern, 470–473
Right/Left Alignment pattern

about, 141, 173–175
form design and, 356
page layout considerations, 137

Row Striping pattern
about, 220–224
Dashboard pattern and, 46, 47
information graphics and, 295
list display considerations, 195

RSS feeds
List Inlay pattern and, 207
News Stream pattern and, 35, 38
Social Links pattern and, 424, 425
social media principles and, 395

rulers (information graphics), 294
RuthsChris.com website, 446, 447

S
Safe Exploration pattern

about, 9
Cancelability pattern and, 269
Escape Hatch pattern and, 104
Many Workspaces pattern and, 69
Multi-Level Undo pattern and, 272

Saffer, Dan, 446, 465

Index  543 

social media
background information, 393
basic usage principles, 395–397
basic usage strategies, 394–395
emerging best practices, 393

social media patterns
Content Leaderboard, 397, 434–437
Conversation Starters, 395, 410–413
Editorial Mix, 395, 399–402
Inverted Nano-pyramid, 396, 413–415
News Box, 397, 430–434
Personal Voices, 395, 403–406
Recent Chatter, 438–440
Repost and Comment, 395, 407–409
Sharing Widget, 396, 426–429
Social Links, 395, 424–426
Specialized Streams, 396, 419–423
Timing Strategy, 395, 416–418

SolidSX Software Explorer application, 325
Songza website

Pagination pattern and, 224
Prominent “Done” Button pattern and, 257

Sortable Table pattern
about, 197, 290, 320–322
list display considerations, 195
organizational model for, 283
Tree Table pattern and, 235

sorting data, 289–291, 320–322
SourceForge website, 158
Southwest website, 259, 260
sparklines, defined, 332
Spatial Memory pattern

about, 17
Movable Panels pattern and, 169
navigation and, 287

Specialized Streams pattern
about, 419–423
Social Links pattern and, 425
social media principles and, 396

SPOT Adventures website
Data Brushing pattern and, 314, 315
Datatips pattern and, 299, 302

spotlight effect, 303–307
Spring-Loaded Modes pattern, 51
Stanford Web Credibility Project, 477
Stanza book reader, 456
Starbucks website

Diagonal Balance pattern and, 178
Editorial Mix pattern and, 401
Fat Menus pattern and, 107
Preview pattern and, 265
Recent Chatter pattern and, 439, 440

News Box pattern and, 431
News Stream pattern and, 36
Picture Manager pattern and, 40, 41
Richly Connected Apps pattern and, 472
showing one single thing, 27
social media principles and, 396

Shneiderman, Ben, 311, 340
Sierra Club website, 434
signage, navigation and, 78
Sign-in Tools pattern

about, 115–117
navigation considerations, 85
Spatial Memory pattern and, 17

signposts, defined, 77
similarity (Gestalt principle)

about, 139
Button Groups pattern and, 246
information graphics considerations, 283
page layout considerations, 134

Simon, Herbert, 11
Sitemap Footer pattern

about, 110–114
Accordion pattern and, 163
Bottom Navigation pattern and, 457
Fat Menus pattern and, 107
navigation considerations, 81, 85

Skins and Themes pattern
about, 498, 519–521
cultural references and, 495

skins versus themes, 520
Slate website

Fat Menus pattern and, 108
Sharing Widget pattern and, 426
Social Links pattern and, 424, 425

SlideShare website, 98, 99
Small Multiples pattern

about, 332–335
Multi-Y Graph pattern and, 331
repeated visual motifs and, 496

Smart Menu Items pattern
about, 245, 261–263
Cancelability pattern and, 270
Multi-Level Undo pattern and, 274

SmartMoney website, 336, 337
Smashing Magazine, 114
SMS messages, 427
Social Links pattern

about, 424–426
navigation considerations, 85
Sitemap Footer pattern and, 111
social media principles and, 395

544  Index

repeated visual motifs and, 496
showing lists of things, 28

timeline (information graphics), 294, 298
timestamps

Recent Chatter pattern and, 439
in URLs, 103

Timing Strategy pattern
about, 416–418
Editorial Mix pattern and, 400
social media principles and, 395
Specialized Streams pattern and, 420

Titled Sections pattern
about, 153–155
Accordion pattern and, 160, 161
Center Stage pattern and, 146
Collapsible Panels pattern and, 164
Dashboard pattern and, 46
desktop applications and, 497
Fat Menus pattern and, 107
form design and, 341
Module Tabs pattern and, 156
page layout considerations, 140
Thumbnail Grid pattern and, 210
Visual Framework pattern and, 143
Wizard pattern and, 56

tkdiff application, 125, 126
Tognazzini, Bruce, 184
toolbars

common renderings, 240
Dropdown Chooser pattern and, 380

tool tips
Annotated Scrollbar pattern and, 125
Datatips pattern and, 300
design suggestions for, 244
Multi-Level Help pattern and, 72

touch screens
Datatips pattern and, 299
design challenges, 442
Generous Borders pattern and, 465–466
Hover Tools pattern and, 250

Touch Tools pattern, 448, 454–456
Toyota navigation system, 184
Treemap pattern

about, 336–340
critical design steps, 337
Dynamic Queries pattern and, 310
interpreting, 338
organizational models for, 283

Tree Table pattern
about, 235–236
Alternative Views pattern and, 65

static indicators, 125
Stefaner, Moritz, 326
Stepwise navigational model, 82
Streamlined Branding pattern, 474–476
Streamlined Repetition pattern

about, 19
Macros pattern and, 278

Structured Format pattern
about, 356, 360–361
Forgiving Format pattern and, 358
form design and, 342, 352, 355
Input Hints pattern and, 365

Sumo Paint editor, 51, 52
surveys, 5

T
table of contents, 90
Target website, 121, 122, 227
Task Pane pattern, 256
Technology Review website

Content Leaderboard pattern and, 437
Recent Chatter pattern and, 439, 440

Technorati website, 428
TED website

browsing interface, 44
Contrasting Font Weights pattern and, 516
Visual Framework pattern and, 143, 144,

145
testing, usability, 343
Text Clear Button pattern, 467–468
themes versus skins, 520
Thumbnail-and-Text List pattern

about, 459–461
Grid of Equals pattern and, 150
list display considerations, 195
mobile device design and, 448
News Stream pattern and, 36
repeated visual motifs and, 496
Vertical Stack pattern and, 450

Thumbnail Grid pattern
about, 210–215
Alternative Views pattern and, 65
Carousel pattern and, 216
Dropdown Chooser pattern and, 382
Grid of Equals pattern and, 150
list display considerations, 195
mobile device design and, 448
One-Window Drilldown pattern and, 203,

204
Picture Manager pattern and, 40–45
Pyramid pattern and, 95

Index  545 

U
UIM/X builder, 161
undo stacks, 273
University of Maryland, 340
University of Oregon, 331
unordered lists, constructing, 349
URLs

Autocompletion pattern and, 375
Deep-linked State pattern and, 102
Text Clear Button pattern and, 467
timestamps in, 103

usability testing, 343
user behavior. See behavioral patterns
utility navigation, 80, 115
UX Magazine

Dashboard pattern, 49
Palette/Canvas screen layout, 54
Wizard pattern, 58

V
Vancouver Olympics website, 425
van Duyne, Douglas K., xix
van Welie, Martijn, xix
verbs. See actions and commands
Vertical Stack pattern

about, 448, 449–451
mobile device design and, 445

viewports, defined, 297
Visual Basic language, 279, 280
Visual Complexity website, 327
visual design

angles and curves in, 492
basics of, 488
branding and, 478
color in, 488–489
cultural references in, 495
desktop applications and, 496–498
evoking reactions, 479–487, 488
images in, 494, 497
importance of, 477
positive affect and, 478
repeated visual motifs, 495
spaciousness and crowding in, 492
texture and rhythm in, 493
typography in, 490–492, 497

visual design patterns
Borders That Echo Fonts, 496, 497, 498,

510–512
Contrasting Font Weights, 498, 516–518
Corner Treatments, 496, 497, 498, 507–509

list display considerations, 197
organizational model for, 283

trellis plot, 335
Tufte, Edward

Overview Plus Detail pattern and, 296, 299
Small Multiples pattern and, 332, 335

TurboTax website, 182
TweetDeck application

about, 69
Many Workspaces pattern and, 68, 70

Twitter
background information, 393
Conversation Starters pattern and, 411
Editorial Mix pattern and, 399
Hover Tools pattern and, 249
Input Hints pattern and, 364, 367, 368
Inverted Nano-pyramid pattern and, 413,

414, 415
Many Workspaces pattern and, 68
News Stream pattern and, 28, 34, 35
Personal Recommendations pattern and, 23
Personal Voices pattern and, 402, 403, 404,

405
Repost and Comment pattern and, 408, 409
Richly Connected Apps pattern and, 471
Same-Page Error Messages pattern and,

389, 390
Sharing Widget pattern and, 426, 427
Sign-in Tools pattern and, 116
Social Links pattern and, 424–426
social media principles and, 395
Specialized Streams pattern and, 419–423
Timing Strategy pattern and, 416–418

Two-Panel Selector pattern
about, 198–201
Feature, Search, and Browse pattern and, 31
List Inlay pattern and, 207
News Stream pattern and, 35, 36, 38
One-Window Drilldown pattern and, 202,

203, 204
Picture Manager pattern and, 40–42
Sequence Map pattern and, 118
Settings Editor pattern and, 60
showing lists of things, 28
Wizard pattern and, 56

typography
borders and, 510
Borders That Echo Fonts pattern and,

510–512
Contrasting Font Weights pattern and,

516–518
visual design considerations, 490–492, 497

546  Index

Social Links pattern and, 424, 425
Streamlined Branding pattern and, 476

Williamson, Christopher, 311
Windows operating systems

Action Panel pattern and, 255, 256
Breadcrumbs pattern and, 122
desktop applications and visual design, 496,

497
Diagonal Balance pattern and, 176
Module Tabs pattern and, 157
Settings Editor pattern and, 60
Skins and Themes pattern and, 520

Wired website
Content Leaderboard pattern and, 437
Sharing Widget pattern and, 428
Social Links pattern and, 424
Specialized Streams pattern and, 419, 421,

422
Timing Strategy pattern and, 417

Wizard pattern
about, 55–58
Changes in Midstream pattern and, 12
form design and, 357
navigation considerations, 82
providing tools to create things, 29
Responsive Enabling pattern and, 183
Sequence Map pattern and, 118
Settings Editor pattern and, 59
user motivation to learn and, 8

Word (Microsoft). See Microsoft Office
applications

WordPress web service
Recent Chatter pattern and, 439
Skins and Themes pattern and, 520, 521

workspaces, defined, 69
Wroblewski, Luke, 261, 465

X
Xerox Star, 180

Y
Yahoo! Developer Network, 163
Yahoo! News

Recent Chatter pattern and, 439, 440
Thumbnail-and-Text List pattern and, 460

Yahoo! pattern library
about, xix
pagination patterns, 227
transition types, 128
Vote to Promote pattern, 396, 439

visual design patterns (continued)
Deep Background, 497, 498, 499–503
Few Hues, Many Values, 489, 504–506
Hairlines, 493, 498, 513–515
Skins and Themes, 495, 498, 519–521

Visual Framework pattern
about, 140, 142–145
Prominent “Done” Button pattern and, 258

visually impaired users, 497
Visual Studio, 379
Vlissides, John, xix
Vote to Promote pattern, 396, 439

W
Wall Street Journal website

Content Leaderboard pattern and, 434
Radial Table pattern and, 306, 307
Sitemap Footer pattern and, 113

Walmart website, 473
The Washington Post website

Data Spotlight pattern and, 305, 306
Vertical Stack pattern and, 450, 451

wayfinding, defined, 78
Weather.com website, 331, 357
Weather Underground website, 138
web browsers

Autocompletion pattern and, 378
Cancelability pattern and, 269
Deep Background pattern and, 499
form design and, 347, 349
information graphics considerations,

287–288
Many Workspaces pattern and, 68, 70
Multi-Level Help pattern and, 72–76
Skins and Themes pattern and, 519
Text Clear Button pattern and, 467
Tree Table pattern and, 236

WebMD website, 109
websites. See also specific websites

Carousel pattern and, 217
clickable site logos, 105
curved corner usage in, 507
Social Links pattern and, 424–426
Stanford Web Credibility Project, 477

Wee Places website, 314, 315
Welie.com, 45
Whole Foods website

Conversation Starters pattern and, 411, 412
Editorial Mix pattern and, 401, 402
News Box pattern and, 432, 433

Index  547 

Specialized Streams pattern and, 422
Thumbnail-and-Text List pattern and, 460,

461
Thumbnail Grid pattern and, 212, 213
timestamps in URLs, 103
Timing Strategy pattern and, 417
Touch Tools pattern and, 455

Z
Zappos website

Personal Voices pattern and, 402, 403, 404
Thumbnail Grid pattern and, 214

zebra striping, 221, 224
Zillow website, 251
zooming

Data Brushing pattern and, 313
Local Zooming pattern and, 316–320
navigation considerations, 288
Overview Plus Detail pattern and, 296

Yahoo! website
Dashboard pattern and, 47
Input Hints pattern and, 368
Input Prompt pattern and, 369
Movable Panels pattern and, 168, 172
Password Strength Meter pattern and, 374
Same-Page Error Messages pattern and, 390
Settings Editor pattern and, 62
Wizard pattern and, 54, 57

Yelp website
collective intelligence and, 394
Recent Chatter pattern and, 439, 440

YouTube website
background information, 393
browsing interface, 42, 44
Collapsible Panels pattern and, 166, 167
Hover Tools pattern and, 252
News Box pattern and, 431
Pagination pattern and, 227
Repost and Comments pattern and, 406
Social Links pattern and, 424

About the Author
Jenifer Tidwell is a writer and consultant in interaction design, information architecture,
and pre-design analysis. She has been designing and building complex applications and
web interfaces for almost two decades. Her clients and past employers include Google,
The MathWorks, nonprofits, and startups. She was one of the first designers to write pat-
terns for user interface design, back in the late 1990s when the concept was first being
applied to software. She lives near Boston, Massachusetts, with her husband, her son,
and a small parrot.

Colophon
The animal on the cover of Designing Interfaces is a Mandarin duck (Aix galericulata), one
of the most beautiful of the duck species. Originating in China, these colorful birds can
be found in southeast Russia, northern China, Japan, southern England, and Siberia. The
males have diverse and colorful plumage, characterized by an iridescent crown, chestnut-
colored cheeks, and a white eye stripe that extends from their red bills to the back of their
heads. Females are less flamboyant in appearance and tend to be gray, white, brown, and
greenish-brown, with a white throat and foreneck.

These birds live in woodland areas near streams and lakes. Being omnivorous, they tend
to have a seasonal diet, eating acorns and grains in autumn; insects, land snails, and
aquatic plants in spring; and dew worms, grasshoppers, frogs, fish, and mollusks during
the summer months.

The mating ritual of Mandarin ducks begins with an elaborate and complex courtship
dance that involves shaking movements, mimed drinking gestures, and preening. Males
fight each other to win a female, but it is ultimately the female who decides her mate.
Mandarin ducklings instinctively follow their notoriously protective mothers, who will
feign injury to distract predators such as otters, raccoon dogs, mink, polecats, eagle owls,
and grass snakes.

Mandarin ducks are not an endangered species, but they are considered to be threatened.
Loggers continuously encroach upon their habitats, and hunters and poachers prize the
males for their plumage. Their meat is considered unpalatable by humans, and they are
generally not hunted for food.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Garamond.
The text font is Adobe Minion Pro, and the heading and note font is Adobe Myriad Pro
Condensed.

	Introduction to the Second Edition
	Preface
	Chapter 1: What Users Do
	A Means to an End
	The Basics of User Research
	Users’ Motivation to Learn
	The Patterns
	Safe Exploration
	Instant Gratification
	Satisficing
	Changes in Midstream
	Deferred Choices
	Incremental Construction
	Habituation
	Microbreaks
	Spatial Memory
	Prospective Memory
	Streamlined Repetition
	Keyboard Only
	Other People’s Advice
	Personal Recommendations

	Chapter 2: Organizing the Content: Information Architecture and Application Structure
	The Big Picture
	The Patterns
	Feature, Search, and Browse
	News Stream
	Picture Manager
	Dashboard
	Canvas Plus Palette
	Wizard
	Settings Editor
	Alternative Views
	Many Workspaces
	Multi-Level Help

	Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding
	Staying Found
	The Cost of Navigation
	Navigational Models
	Design Conventions for Websites
	The Patterns
	Clear Entry Points
	Menu Page
	Pyramid
	Modal Panel
	Deep-linked State
	Escape Hatch
	Fat Menus
	Sitemap Footer
	Sign-in Tools
	Sequence Map
	Breadcrumbs
	Annotated Scrollbar
	Animated Transition

	Chapter 4: Organizing the Page: Layout of Page Elements
	The Basics of Page Layout
	The Patterns
	Visual Framework
	Center Stage
	Grid of Equals
	Titled Sections
	Module Tabs
	Accordion
	Collapsible Panels
	Movable Panels
	Right/Left Alignment
	Diagonal Balance
	Responsive Disclosure
	Responsive Enabling
	Liquid Layout

	Chapter 5: Lists of Things
	Use Cases for Lists
	Back to Information Architecture
	Some Solutions
	The Patterns
	Two-Panel Selector
	One-Window Drilldown
	List Inlay
	Thumbnail Grid
	Carousel
	Row Striping
	Pagination
	Jump to Item
	Alphabet Scroller
	Cascading Lists
	Tree Table
	New-Item Row

	Chapter 6: Doing Things: Actions and Commands
	Pushing the Boundaries
	The Patterns
	Button Groups
	Hover Tools
	Action Panel
	Prominent “Done” Button
	Smart Menu Items
	Preview
	Progress Indicator
	Cancelability
	Multi-Level Undo
	Command History
	Macros

	Chapter 7: Showing Complex Data: Trees, Charts, and Other Information Graphics
	The Basics of Information Graphics
	The Patterns
	Overview Plus Detail
	Datatips
	Data Spotlight
	Dynamic Queries
	Data Brushing
	Local Zooming
	Sortable Table
	Radial Table
	Multi-Y Graph
	Small Multiples
	Treemap

	Chapter 8: Getting Input from Users: Forms and Controls
	The Basics of Form Design
	Control Choice
	The Patterns
	Forgiving Format
	Structured Format
	Fill-in-the-Blanks
	Input Hints
	Input Prompt
	Password Strength Meter
	Autocompletion
	Dropdown Chooser
	List Builder
	Good Defaults
	Same-Page Error Messages

	Chapter 9: Using Social Media
	What This Chapter Does Not Cover
	The Basics of Social Media
	The Patterns
	Editorial Mix
	Personal Voices
	Repost and Comment
	Conversation Starters
	Inverted Nano-pyramid
	Timing Strategy
	Specialized Streams
	Social Links
	Sharing Widget
	News Box
	Content Leaderboard
	Recent Chatter

	Chapter 10: Going Mobile
	The Challenges of Mobile Design
	The Patterns
	Vertical Stack
	Filmstrip
	Touch Tools
	Bottom Navigation
	Thumbnail-and-Text List
	Infinite List
	Generous Borders
	Text Clear Button
	Loading Indicators
	Richly Connected Apps
	Streamlined Branding

	Chapter 11: Making It Look Good: Visual Style and Aesthetics
	Same Content, Different Styles
	The Basics of Visual Design
	What This Means for Desktop Applications
	The Patterns
	Deep Background
	Few Hues, Many Values
	Corner Treatments
	Borders That Echo Fonts
	Hairlines
	Contrasting Font Weights
	Skins and Themes

	References
	Index

