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1Porsche AG, Germany
2University of Duisburg-Essen, Germany

3Department of Computer Science, ETH Zürich, Switzerland
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Figure 1: TransforMR is a video see-through mixed reality system for handheld devices that performs 3D pose-aware object
substitution to create meaningful mixed reality scenes, enabling applications such as alternate mixed realities or real-time virtual
character animation in context. (a) From just the monocular color camera of a mobile deivce, (b) TransforMR performs instance
segmentation, (c) object removal, and (d) 3D pose estimation to substitute objects with pose awareness (top right).

ABSTRACT

Despite the advances in machine perception, semantic scene under-
standing is still a limiting factor in mixed reality scene composition.
In this paper, we present TransforMR, a video see-through mixed re-
ality system for mobile devices that performs 3D-pose-aware object
substitution to create meaningful mixed reality scenes. In real-time
and for previously unseen and unprepared real-world environments,
TransforMR composes mixed reality scenes so that virtual objects as-
sume behavioral and environment-contextual properties of replaced
real-world objects. This yields meaningful, coherent, and human-
interpretable scenes, not yet demonstrated by today’s augmentation
techniques. TransforMR creates these experiences through our novel
pose-aware object substitution method building on different 3D ob-
ject pose estimators, instance segmentation, video inpainting, and
pose-aware object rendering. TransforMR is designed for use in the
real-world, supporting the substitution of humans and vehicles in
everyday scenes, and runs on mobile devices using just their monoc-
ular RGB camera feed as input. We evaluated TransforMR with
eight participants in an uncontrolled city environment employing
different transformation themes. Applications of TransforMR in-
clude real-time character animation analogous to motion capturing

in professional film making, however without the need for prepa-
ration of either the scene or the actor, as well as narrative-driven
experiences that allow users to explore fictional parallel universes in
mixed reality. We make all of our source code and assets available1.

Index Terms: Human-centered computing—Mixed / augmented
reality—;—

1 INTRODUCTION

Continuous advances in geometric scene understanding have con-
tributed to the physical coherence of virtual objects in mixed real-
ity scenes, for example through improvements in mesh reconstruc-
tion [63], occlusion shading [7], visual-inertial odometry [20,57], or
light source estimation [59]. Research on these topics is increasingly
dedicated to extracting semantic information from the real-world
scene [10, 24] to enable novel mixed reality (MR) experiences [35]
or context-aware interactions between virtual-world characters and
the real-world environment [52].

However, both semantic scene understanding and functional—
rather than physical—reasoning [67] remain hard problems. Cre-
ating an alternate reality in MR from scratch that augments a real-
world city scene is a considerable challenge. Take the example of
SciFi-like hover cars that pace down the streets: The mixed real-
ity system first needs to perform scene understanding, including

1TransforMR code release: https://github.com/MohamedKari/
transformr

https://github.com/MohamedKari/transformr
https://github.com/MohamedKari/transformr


recognizing lanes and the driving direction. To make virtual hover
cars halt at a crossing zone while virtual robot pedestrians leave a
real-world store entry, cross in front of the hover cars, and wait at a
bus station, the system would then need to detect the crossing zones,
store entries, bus stations, and sidewalks. To create such novel mixed
reality experiences from scratch requires a level of scene understand-
ing that draws on significant advances in machine perception, such
as spatial scene decomposition and conceptual reasoning.

In this paper, we propose TransforMR, a mixed reality system
for theme-guided scene transformation through pose-aware object
substitution. TransforMR is capable of creating such meaningful
mixed-reality scenes as in the example, showing and letting the
user interact inside alternate mixed realities that are situated in the
real-world context. TransforMR accomplishes this by repurposing
existing physical objects in the scene as proxy objects that transfer
their semantics in their respective environment to virtual objects. In
the scenes created by TransforMR, users may attribute behavioral
and environment-contextual properties of replaced real-world objects
to the virtual objects. This creates semantically consistent and more
plausible interactions compared to virtually augmented objects that
do not inherit real-world object context and merely co-exist in the
real-world surroundings.

Our system transforms visual recordings on-the-fly and is in-
dependent of a specific environment, therefore also applicable in
previously unseen scenes and locations. TransforMR processes the
feed of a monocular RGB camera to derive a virtual scene through
a pipeline of perception, transformation, and construction. In the
perception step, we integrate deep learning models that run on a
multi-GPU-accelerated back-end, and therefore offload all process-
ing from the mobile device. Our back-end system analyzes the
streamed-in video through semantic 2D instance segmentation [12]
as well as 3D human keypoint [34, 44] and 6 degrees-of-freedom
vehicle pose [29] estimation. For transformation, TransforMR log-
ically maps recognized objects to virtual objects according to a
selected theme. In the construction step, TransforMR first removes
the physical objects using 2D segmentation information and real-
time video inpainting [23]. Lastly, TransforMR derives the final
scene from projecting the theme-specific objects into the scene using
the 3D pose information. Our use of inpainting allows transformed
objects to occupy less display space than the removed objects, re-
constructing the background where needed.

Figure 1 shows TransforMR in action. Here, a user is exploring
the transformation of reality by looking through the tablet while
freely walking through the real world. TransforMR substituted all
pedestrians and vehicles from the scene with semantically corre-
sponding objects from the “Animals” theme. As depicted in the fig-
ure, the transformed objects are shown in the context of all physical
surroundings, allowing the user to maintain their frame of reference
for safe navigation (e.g., when climbing stairs).

To the best of our knowledge, TransforMR is the first system with
the capability of 3D pose-aware object substitution in unbounded,
unprepared, and unseen environments with visually complex scenes.
We enable this unprecedented live mixed reality experience with
the sole requirement of a single RGB camera, making our system
suitable for broad applicability in lower-end phones or tablets and
high-end devices alike.

Contributions
Taken together, we make the following contributions in this paper:

• Pose-aware object substitution as a novel technique to creat-
ing meaningful, theme-based alternate mixed reality scenes
with virtual objects that assume behavioral and environment-
contextual properties of replaced real-world objects,

• A camera-to-display system architecture, implementation, and
design rationale for “TransforMR”, a distributed mixed reality

system that adapts, unifies, and integrates a series of deep
learning-based 2D and 3D scene perception architectures as
well as video inpainting for operating in-the-wild in real-time
in unseen environments on commodity mobile devices,

• A parallization architecture employing three-step pipeline par-
allelism and three-fold task parallelism to achieve near-real-
time operation of the integrated computer vision models at
approximately 15 frames per second,

• An evaluation and discussion of the qualitative and technical
aspects of TransforMR,

• Applications of TransforMR that comprise real-time character
animation in real-world context and narrative-driven, consump-
tive experiences of alternate mixed reality scenes.

2 RELATED WORK

TransforMR composes the virtual scene with the context provided
by the real scene. Previous work that uses real-world scene context
for virtual-scene composition includes geometry- and depth-aware
AR, superposition-based AR, and physicality-aware VR. As pose-
aware object substitution features an object removal procedure, we
consider diminished reality as well as as a pipeline of diminished
and augmented reality as related areas. Given the transformative
character of TransforMR, we consider 3D scene reconstruction and
transformation, as well as visual transformation as related research.

2.1 Context-Aware Mixed Reality
Geometry-aware AR and Depth-aware AR as implemented in Ap-
ple’s ARKit2 and Google’s ARCore3 enable applications to addi-
tively render new objects into a real scene while respecting its the
geometrical context, providing capabilities for collision detection
between real and virtual objects (e.g., virtual rain drops hitting the
real ground, or virtual balls bouncing off the real walls), occlusion
shading (i.e., partially covering virtual objects by real objects), or
depth-of-field effects (e.g., bokeh or fog), using depth-from-motion
approaches or depth sensors [7, 56]. Moreover, Nuernberger et
al. [42] explore a concept for aligning virtual objects with edges in
the real world. However, semantically meaningful augmentations
are still difficult to achieve, in particular in an automated fashion
without user guidance such as anchor setting, since they require the
system to not only have an accurate geometric representation, but
also a purposeful semantic representation beforehand. Furthermore,
they do not feature object replacement or removal procedures.

Superposition-based AR is a widely established approach for
anchoring a virtual object with a concealed real-world object, that
is seen for the first time (e.g., a face) or has been incorporated
into a set of reference objects. Examples include Annexing Reality
by Hettiarachchi and Wigdor [14], Snapchat Lenses4 and Apple
Animojis5. This, of course, leads to the restriction that rendered
objects must fully cover the real objects by being of similar shape
and larger size. Especially when replacing multiple objects in a
scene that are close to each other, this enlargement constraint cannot
be satisfied without unnatural overlapping effects. In MediaPipe,
Lugaresi et al. [30] extract object poses from shoes and chairs and
superimpose virtual objects based on the pose information.

Physicality-Aware VR is concerned with enabling a virtual-reality
experience that allows roaming the virtual environment while avoid-
ing physical obstacles through redirected walking. Yang et al. [62]
present DreamWalker, a system that - given a real-world destination
– guides the user through a pre-authored virtual environment while

2ARKit:https://developer.apple.com/documentation/arkit
3ARCore:https://developers.google.com/ar/discover
4https://www.engadget.com/2020-02-20-snapchat-ground-

lenses-floor-is-lava.html
5https://www.apple.com/newsroom/2019/12/clips-now-

features-memoji-and-animoji-new-stickers-and-more/
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avoiding physical static and moving obstacles. Cheng et al. [5]
present VRoamer, a system that procedurally generates VR environ-
ments on-the-fly, constrained by the perceived physical obstacles.
While the aforementioned work focuses on avoiding the interaction
mismatches between the real and virtual environment with respect
to walking, the subfield of tangible AR deals with reducing interac-
tion mismatches with respect to touching, e.g., using physical proxy
objects [38, 48, 50].

2.2 Dimished Reality
Diminished Reality aims at removing objects from a scene [11, 13,
19, 21, 32, 36, 40]. However, none of these systems simultaneously
satisfy the three imposed constraints of (1) dimishing with only
a real-time stream of monocular RGB information, (2) dimishing
moving objects, and (3) dimishing all instances of a certain object
class. More importantly however, diminished reality is not at all
concerned with the simultaneous estimation of 3D poses or rendering
replacement objects instead.

Piping Diminished Reality and Augmented Reality While our
notion of Pose-Aware Object Substitution requires both diminishing
real objects from and placing virtual objects in the scene, a naı̈ve
pipeline of separately applying a Diminished Reality system and then
applying a geometry-aware AR system is fundamentally insufficient
to achieve the envisioned result for TransforMR. Specifically, such a
pipeline would not be able to achieve semantical coherence between
the virtual objects and the environment. This inability results from
the lack of semantic information or 3D pose information in either of
the systems. For example, such a DR/AR pipeline could not create
scenes in which vehicle-like objects move along real driving lanes,
because the concept of a “lane” is not known to the AR system.

2.3 3D Scene Reconstruction and Transformation
Litany et al. [28] present an approach for semantics-invariant scene
transformation based on point clouds in rooms. Izadinia et al. [18]
present a system for transforming a single RGB image of a furnished
room into a corresponding composition of CAD models, drawing
on a database of such models. Their system is based on multiple
applications of convolutional networks for object detection, scene
segmentation into “ceiling”, “right wall”, “middle wall”, etc. to
derive room geometry, and estimating the objects’ feature vectors
for similarity measurements against the database. Finally, they apply
a render-and-match approach to refine 3D poses. Avetisyan et al. [1]
pursue the same objective, however rely on joint layout and object
estimation. Shapira and Freedman [49] present Reality Skins, a
system for generating virtual environments based on a 3D scan of
a room. These setups are incompatible with our goal of allowing
untethered open-world on-the-fly applications.

2.4 Visual Transformation
Non-photorealistic 2D rendering ranges from traditional convolu-
tions to neural video style transfer [4, 17, 47] to create cartoon, night
vision, art, or similar effects. However, by design, these approaches
generally modify texture without the possibility to perform transfor-
mations such as replacing vehicles with animals.

Video-to-video translation has been used for input-conditioned
creation of photorealistic videos. Thies et al. [54] present Face2Face
for real-time facial reenactment. Wang et al. [58] present Few-Shot
vid2vid for facial or body reenactment or converting semantic maps
or human pose models to image sequences.

2.5 Summary
While we have identified technically similar or conceptually similar
work in the preceding paragraphs, we argue that all of it is func-
tionally different in that it does not aim at providing a real-time,
on-the-fly user experience through transforming a real scene into a
semantically transformed, yet isomorphic scene, which preserves

the correspondence between real and virtual objects. These func-
tional differences technically manifest in fundamentally different
system architectures that for example do not comprise components
for semantic mapping, object replacement or removal using temporal
and spatial information, have less computation needs and do not
need investigate offloading to multiple backend GPUs, nor deal with
pipeline parallelism.

3 TRANSFORMR: DESIGN & ARCHITECTURE

In this paper, we propose a novel method for composing meaningful
mixed reality scenes by transforming a real-world scene into an alter-
nate reality through pose-aware object substitution. Figure 2 shows
our proposed substitution procedure comprising object detection and
pose estimation, object removal, object mapping, and pose-aware
object rendering. In the following, we consider our design objectives,
describe our system architecture for pose-aware object substitution,
and describe its technical implementation.

3.1 Design Objectives
TransforMR builds on recent advances in computer vision to realize
pose-aware object substitution under a set of design objectives that
enable in-the-wild application:

• Environment Independence. We want TransforMR to operate
on previously unseen scenes without prior preparation of the
environment. This means our system cannot rely on on-site-
installed camera systems known from room-scale experiences.

• Handheld Display Rendering. To allow users to comprehend
the correspondences between the virtual and real objects, we
display transformed scenes on a handheld display. This assorts
well with the objective of environment independence, as hand-
held displays are, generally speaking, more broadly applicable
in public spaces than head-mounted displays.

• Mobile Device Compatibility. As we envision broad applica-
bility of TransforMR by enabling users to employ their own
mobile device, we impose the constraint of compatibility with
common smartphones or devices without the need for addi-
tional on-person hardware. As a consequence, perception must
rely on a monocular RGB camera only and does not include
time-of-flight sensor information.

• Real-Time Execution Ability. Being restricted to one monoc-
ular RGB camera only entails the requirement of compute-
intensive machine vision methods for object and pose detection,
and object removal. This conflicts with the limited hardware
capacities present in mobile devices. Nonetheless, we sub-
ject our system to real-time execution, that is we abstain from
a post-capture AR approach and instead aim at processing
frames in a real-time fashion.

3.2 Pose-Aware Object Substitution Architecture
Figure 3 gives an overview of our pose-aware object subsitution
system. The overall system input is given by a real-time sequence
of monocular RGB frames representing observations from the real
environment. The overall system output is a sequence of RGB
frames showing the transformed scene. As illustrated in Fig. 4,
TransforMR performs a series of perception, transformation, and
construction operations as described in the following.

3.2.1 Perception: 3D Pose Estimation
We intend to render virtual objects into the conceived scene with
the same pose as the physical object being replaced. Therefore,
it is necessary to estimate the 3D poses of those physical objects
first. While certain problems such as instance segmentation and 2D
bounding box detection can be solved with general-purpose models
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Figure 2: An example of continuously creating a Halloween-themed alternate reality through pose-aware object substitution, based on object
removal through deep-learning-based instance segmentation and video inpainting, and as well as 3D pose estimations for humans and vehicles.
Please also refer to the video figure.
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Figure 3: Component diagram of the TransforMR system imple-
mentation. TransforMR runs 2D and 3D pipelines in parallel with
both pipelines performing perception, transformation, and construc-
tion steps. The 2D pipeline comprises instance segmentation and
non-look-ahead video inpainting in image space. The 3D pipeline
estimates object poses in 3D camera space, and renders objects at
the same position with the same pose. Mapping is guided by themes
through class-specific mapping instructions.
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Figure 4: Examples for our 3D-pose-aware object substitution ap-
proach. 3D pose estimation is performed for vehicles (top) and
humans (bottom). Vehicles poses are estimated as oriented 3D
bounding boxes. Human poses are estimated as 3D joint keypoints.

trained on high-diversity datasets, 3D pose estimation algorithms
are predominantly designed for specific purposes.

For detecting 3D poses – more specifically, 6 degrees-of-freedom
pose – of vehicles in traffic scenes [16, 25, 29, 37], we employ
SMOKE (Single-Stage Monocular 3D Object Detection via Key-
point Estimation) by Liu et al. [29]. Relying on a CenterNet-like
network architecture with deep layer aggregation and deformable
convolutions [6, 64, 68] for feature extraction, SMOKE directly re-
gresses location and orientation parameters from a single monocular
RGB frame without an intermediary step of inferring 2D object
proposals first. Since SMOKE operates on single frames and ignores
the temporal dimension, we employ a distance-based tracking filter
on the estimated centroid in 3D space to infer cross-temporal object
identity.

For detecting 3D poses – more specifically, 18 different keypoints
in 3D space – of humans [33, 34, 45, 46, 61], we employ Lightweight
Human Pose Estimation by [45] which is based on a previously
presented architecture [34], however, modified in order to decrease
inference duration by using a MobileNet-like [15] feature extractor.
It is noted that Android’s ARCore doesn’t support human pose
estimation and Apple’s ARKit supports 3D human pose estimation
just for a single person and on recent chipsets [55] only. Lightweight
Human Pose Estimation can estimate the poses of multiple persons
simultaneously. As with the 3D vehicle pose estimation, a distance-
based tracking is applied to infer object identity across a sequence
of frames. Attached to the feature extractor are 2D and 3D keypoint
detection stages.

Both pose estimation models are encapsulated as independent
modules with the same abstract interface of consuming a single
frame and thereupon returning a list of pose detections. State from
processing previous frames is managed internally by each module.
While models should predict pose information accurately relative to
the camera, we adjust for different relative scales across the models
by maintaining a model-specific scaling factor. Figure 4 visualizes
the 3D awareness in image space, achieved by the pose estimation
procedures described.

3.2.2 Perception: 2D Segmentation

For the object removal procedure, we rely on hole inpainting. We
determine the holes to be inpainted through instance segmentation
the Mask R-CNN algorithm [12]. Each instance segmentation mask
corresponds to a detected instance and represents a bitmap the size
of the input image which indicates the presence or absence of a
pixel belonging to the respective instance. We use the detectron2
implementation with a ResNet-50/FPN feature extractor.
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Figure 5: Overview of the specified SciFi, Halloween, Animals,
Prehistory, and Classic Cars themes. The different themes feature
3D vehicular and humanoid object models.
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Figure 6: Exemplaric comparison of the two alternative real-time
video inpainting methods, integrated in TransforMR. (a) Based on
the monocular RGB frame, (b) TransforMR runs 2D instance seg-
mentation to produce the inpainting bitmap. (c) With our adaptions
in VINet, inpainting can operate at approximately 4 FPS without lag
at a single VINet model instance and approximately 7 FPS with two
load-balanced VINet model instances. VINet yields visually coher-
ent inpainting for large masks. (d) With our adaptions in LGTSM, a
chunk size of 4 frames, and downsampling to a width and height of
200 px, can operate at approximately 22 FPS, however at the cost of
visual coherence for larger holes.

3.2.3 Transformation: Theme-Guided Semantic Mapping
Transformed scenes are a function of the object-reduced input frame,
the current object detections estimated by the system, and the theme
selected by the user. A detection comprises estimations of the
class, 3D pose information, and possibly additional information
of a real-world object. The theme comprises class-specific mapping
instructions. Each mapping instruction is scoped to a detection class
supported by the perception module. It indicates which virtual object
models can be rendered in lieu of the real object. A single class, e.g.,
car, can be mapped to different virtual object models, thus producing
diverse transformations. In order to retain the mapping between a
physical object in a frame and its previous mapping in preceding
frames, a substitution state storing tracking IDs of detected objects
and the corresponding virtual instances is managed. Figure 5 shows
the themes we have prepared for use in TransforMR.

With these themes, users can employ TransforMR to either create
their own narratives or to interactively consume provided narratives,
e.g., created by a narrative provider in a certain context such as a
museum or zoo. We discuss these narratives in Section 5.

3.2.4 Construction: Video-Inpainting-based Object Removal
We accomplish the goal of object removal through real-time video
inpainting where the inpainting mask in each frame is filled by
estimating the globally and locally most plausible pixel values. In-
painting masks are derived from the instance segmentation bitmaps
estimated as described above.

Since classical methods of image inpainting generally yield im-
plausible results for larger holes or lead to inconsistent or flickering
inpainting across consecutive video frames, we turn to learning-
based video-inpainting methods [3,8,22,23,26,39,43,51,60,65,66].
Generally relying on optical-flow estimation to reconstruct the path
of a pixel value through the temporal dimension, information is
propagated from previous or future frames into the region to be
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Figure 7: Deployment diagram of TransforMR. RGB frames are
captured on the client-device camera, shipped over the network to
a GPU-accelerated host that performs computation-intensive oper-
ations and returns pose estimations for all relevant objects as well
as the inpainted frames. Rendering of the virtual 3D objects takes
place on the client device.

filled. Filtering out methods which, by design, expect knowledge of
all frames in advance, or methods with uncompetitive frame rates
that are therefore unfit for our real-time objective, we integrated
VINet [22, 23] and inpainting based on Learnable Gated Temporal
Shift Modules (LGTSM) [3] as alternative methods into our system
architecture.

While VINet is originally designed to peek five frames into the
future, we adapted the inference logic so that no look-ahead is
performed, thus reducing system lag. Further, while LGTSM-based
inpainting originally chunks up a video into smaller batches, and
operates on these smaller batches, we adapted the inference logic
to feed-back inpainted frames into the next input chunk with an all-
intact inpainting mask, thus yielding a frame-by-frame inpainting
method suitable for real-time application.

VINet has an inference latency of approximately 250 ms, however
produces visually coherent results for larger holes. Using a load-
balancing approach and distributing frames across two VINet model
instance allows to operate inpainting at 7 FPS. With our adaptions
for frame-by-frame real-time inference, LGTSM-based inpainting
has an inference latency of only approximately 45 ms. However,
while VINet can propagate information of long gone frames to the
current frame inpainting through state in the recurrent LSTM units,
LGTSM-based inpainting only convolutes on the last three frames
for inpainting and fills the remaining information generatively. This
results in less coherent results for larger holes. Both frame rates
refer to exclusive usage of an NVIDIA Tesla V100 GPU.

3.2.5 Construction: 3D Rendering

With the inpainted frame, the detections including the 3D pose
information, and the selected theme as an input, we run the 3D scene
rendering in the Unity graphics engine to obtain the transformed
frame.

3.3 Technical Implementation

As all computer-vision models in TransforMR employ convolutional
neural networks are therefore computationally intensive, we run
them on four NVIDIA Tesla V100 GPUs using CUDA. Each model
runs in a separate Docker container on the cloud server.

We implement a central access point to the TransforMR backend,
also running in a container that distributes a single request across
the different models and integrates their responses in the perception
result that is sent back to the client. Client-server and inter-container
communication is implemented using gRPC6. While the perception
is offloaded to the cloud, the transformation and the construction

6gRPC: https://github.com/grpc/grpc

https://github.com/grpc/grpc
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Figure 8: Breakdown of the network and inference latencies in Trans-
forMR. Note, that latencies of components in a parallelized pipeline
do not sum up, but are given by the maximum of the individual
pipeline component latencies. Network RTT was measured from
our institutional local area network in Zürich to an AWS EC2 VM in
Frankfurt. It was determined in a network test setup by immediately
returning the received frame. Benchmarking was performed on the
scene that is shown in Figure 6.

module are running on the terminal client in Unity7. This setup
allows shifting computationally demanding load from the device
into the cloud, thus relaxing the hardware and software requirements
on individual users’ local devices. Also, the architecture enabled
us to quickly test different state-of-the-art algorithms which were
not optimized for mobile devices. The downside of this approach is
that going over the network adds a lag, depending on the network
conditions. Figure 7 exhibits a deployment diagram.

Using LGTSM-based inpainting instead of VINet, our computa-
tion backend achieves a processing frame rate of approximately 15
FPS and a system lag of 3 frames. We achieve this by a multi-faceted
parallelization architecture. First, we employ pipeline parallelism
between the network and the computation backend, so that we send
the next RGB frame while the previous frame is still being processed
by the backend. Second, we employ threefold task parallelism for a)
3D pose estimation of vehicles, b) 3D pose estimation of humans,
and c) the segmentation and inpainting pipeline. As inpainting de-
pends on segmentation, we cannot run segmentation and inpainting
in parallel for a single given frame, but we can run instance segmen-
tation, while the previous frame is still being inpainted. That is, third,
we employ pipeline parallelism between the instance segmentation
and the inpainting. In summary, at each frame cycle, the backend
runs inference through four neural networks in parallel. We restrict
frame buffer size at the central entrypoint service to size 1, so that
the backend throttles the client automatically if frames are served
faster than they are processed.

4 PRELIMINARY EVALUATION

4.1 Participants

We conducted a preliminary user evaluation with 8 participants
(n = 8, n f emale = 2, ages 21 to 55, µage = 28.8, σage = 10.9), 5 of
which from our institution. No one of the participants was involved
in the project. Two participants had limited experience with AR
applications, another two had extensive experience. The participants
received a small gratuity after the evaluation sessions.

7Unity: https://unity.com/

4.2 Procedure
Participants were first shown a video of a scene that was transformed
using TransforMR with the SciFi theme. They were informed that
the system is capable of transforming humans and vehicles. We
employed quality-optimized inpainting. 5 out of the 8 evaluation
sessions were conducted at a busy street near our institution, the
other three were conducted at a traffic-calmed street with a bordering
park farther away. On-site, participants were instructed to employ
an Apple iPad Pro, 12.9 inches, to explore the surroundings at their
discretion, switching through all 5 provided themes. Overall, each
evaluation session took 14 to 25 minutes. Afterward, participants
were to fill out the Augmented Reality Immersion questionnaire by
Georgiou and Kyza [9], extended by TransforMR-specific questions,
by stating agreement on a 7-point Likert scale. In addition, we
conducted a semi-structured interview to gain insight into their
subjective impressions.

4.3 Results and Discussion
Figure 9 exhibits a subset of the evaluation items. All participants
found the experience enjoyable or very enjoyable.

Transformation Themes. Three participants (P1, P6, P7) liked
the animal theme most with all of them stating they liked the wing-
flapping animation of the bee and the hummingbird. Two partici-
pants (P3, P4) expressed that they liked the Halloween theme best,
one of them (P3) stating that it suited the atmosphere of the tree-lined
road very well. From this, we derive the idea of context-specific
themes as part of a consumptive interaction pattern. E. g., visitors of
an amusement park might want to alter their environment by substi-
tuting other visitors with suitable cartoon characters. We elaborate
on this in the applications subsec. 5.2.

Interaction. Most interestingly, three participants using the sys-
tem asked if were okay for other participants to join in on the activity
as “actors” in order to explore how humans were transformed. From
this, we derive the notion of the director-actor interaction pattern
for creating narratives, described in subsec. 5.1. Furthermore, P5
described it as “awkward to direct the tablet on random people un-
known to him”. He noted that this “awkwardness” was reduced when
people would approach him or when multiple people were in the
scene. Extending the perception range to other objects, e.g., animals,
could allow users to focus on other alterations beyond humans. P6
noted that he would have liked to see objects from very up close, but
getting too close would make them vanish. Whether the 3D object
pose can be inferred from an object depicted in macro-perspective
depends on the model. For example, the 3D vehicle pose estimation
model we employ requires the vehicles 3D center to be in the frame.
On the other hand, the 3D human pose estimation model can also
infer the pose, for example, from the head of a human only.

Alteration Experience. Three (P2, P4, P6) out of the 8 participants
stated that they would have liked to see augmentation effects known
from classic AR apps too, while the other 5 participants (P1, P3, P5,
P7, P8) stated they prefer the app to only show virtual objects that
have a real correspondence. One participant (P8) who indicated the
preference of no augmentations said, that it felt “more real to known
that what [she] saw was really there, in a way, and not just imagined”.
One participant (P2) liked classic augmentations in addition to the
real-world object alterations stated that this would be “interesting
for situations when there are no cars or humans around”. However,
with 5 users abstaining from the wish to add Augmented Reality
objects to the scene, we conclude that upholding the correspondence
awareness between virtual and real objects exhibits a particularly
exciting alteration experience. P7 reported in a highly positive mood
that he felt as if he was “in an apocalypse movie with mutated bees”.
However, P6 expressed disconcertment on the fact that the prehis-
toric theme transforms not only parked cars, but also even moving
vehicles to wooden carriages without a draft animal. From this,
we see that one has to distinguish between spatial plausibility and

https://unity.com/
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Participants

I liked the type of the activity
I did not have difficulties in controlling the AR application
I was often excited since I felt as being part of the activity

I was more focused on the activity rather than on any external distraction
All my senses were totally concentrated on the activity

The topic of the activity made me want to find out more about it
Virtual objects were placed into the scene in a plausible way.

I felt some sense of satisfaction when a real object was substituted by a virtual object.
I liked exploring different themes in the same areas.

Likert Value
1 - Strongly Disagree
2
3
4 - Neither Agree nor Disagree
5
6
7 - Strongly Agree

Figure 9: Likert ratings of the participants on statements from the ARI questionnaire (upper 6 statements) by Georgiou and Kyza [9] and on
TransforMR-specific statements (lower 3 statements)

Halloween ThemeSciFiOriginal Scene Animals Theme

Junction

Pedestrian Area

Traffic-Calmed Street

Figure 10: Different scenes transformed towards different themes. TransforMR enables users to roam previously unseen, unbounded,
unprepared, and changing environments featuring multiple humans and vehicles, all at the same time, transformed by a user-chosen theme.

semantic plausibility. The above-mentioned statement on the bee
shows that semantic implausibility can be a source of additional
excitement or disconcertment. Since users can take agency by se-
lecting certain themes and decide on the camera direction, they can
influence the plausibility level achieved.

Alteration Consistency. While all participants considered the al-
teration consistency positive overall, two participants (P3, P1) noted
that sometimes the human objects “were off and jumping around”
resp. “switching identities”. Incremental improvement of the pre-
diction models could help stabilize prediction. Two participants
(P2, P4) said that they noticed significant differences in the object
removal quality. P2 recounted that multiple times he “didn’t even
notice that there was actually a person crossing right in front of
them” when at other times it seemed as if “it just blurred the object”.
While inpainting still remains a difficult problem in computer-vision
research, we believe it could be interesting to also add a post-capture
AR experience, as known from recent releases in Google ARCore8.
Here, instead of harder real-time inpainting, this would allow using
slower, but better inpainting operating on all frames including future
ones, thus enriching the optical flow information.

8https://developers.google.com/ar/develop/java/

recording-and-playback/introduction

Focus. While all participants stated that they primarily focused on
the display, 4 out 8 participants (P1, P5, P6, P8) recalled they would
regularly check the real scene and compare it with the transformed
scene and the other 4 participants (P2, P3, P4, P7) would compare it
to the real scene sometimes. P1 and P2 recounted that they would
look up especially to search for new situations. These findings
cement our conclusion that users see Correspondence Awareness as
an important part of the experience.

5 APPLICATIONS

In the above evaluation, we ascertained that users like to employ
TransforMR for real-time in-context character animation with multi-
ple users as well as for the exploration of an alternate mixed reality
around them. From this, we derive the usage patterns of consuming
narratives and creating narratives.

5.1 Creating Narratives
As seen in Figure 11, users can follow a director-actor interaction
pattern, where one user takes the role of the director and one or
more other users take the role of actors. The directing user will then
employ their smartphone to capture the acting users in context, thus
creating a transformed scene. In so doing, users can collaboratively

https://developers.google.com/ar/develop/java/recording-and-playback/introduction
https://developers.google.com/ar/develop/java/recording-and-playback/introduction


Director records Virtual Character
proxied by an Actor

Observer explores their surroundings.

Creative Interaction Consumptive Interaction

Figure 11: Left: Following a director-actor interaction pattern, users
can perform real-time character animation, reminiscent of motion
capturing in professional film making studios, however in real-world
context instead, in order to create their own narratives. Right: Users
can also explore and transform their surroundings single-handedly.
In this pattern, interaction is given through theme selection, environ-
ment navigation, and camera direction.

tell stories about virtual characters, offered in the theme, who walk
through parks or school buildings, ride the bus, or do grocery shop-
ping. This kind of role play is only achievable through the concept
of pose-equivalent character substitution, allowing interesting new
scenes composed of interactions between characters such as anthro-
pomorphic animals, robots, celebrities, or avatars, proxied by real
humans.

5.2 Consuming Narratives
Consuming predefined narratives with context-specific themes, in
particular location as an important context property, could, for ex-
ample, enable users to experience time-travel through the history
of traffic in a certain region e.g., by visualizing evolving eras of
urban traffic through-out history. Similarly, visitors at a historic site
could transform their environment towards a theme replacing other
visitors with models of humans that are in line with the historic
culture in question. Or possibly, visitors of an art museum might
want to experience the museum alongside the original artists instead
of their real fellow visitors. By previously authoring such themes
with the corresponding 3D object models, maintainers of a facility
could enable visitors to immerse deeper into their stay.

6 LIMITATIONS

Increasing Prediction Accuracy. Object and pose prediction models
as well as inpainting are at the core of the TransforMR system. The
plausibility of the transformed scenes is therefore inherently limited
by the models’ prediction performances. The model for human
pose estimation is limited to humans no farther away than approxi-
mately 15 meters and unreliable when it comes to correctly detecting
keypoints of cyclists. Tracking of objects is also challenging, in par-
ticular in if they are located very near to each other. Figure 12a)
and b) show examples. Improvements could be achieved, e.g., by
adding temporal recurrency to the detection models [27], using a
learning-based object tracker [16], employing detection models with
physical constraints [46], or building on advances in correspondence
estimation [53].

Improving Visual Coherence. Modern augmented reality frame-
works feature techniques that can improve the visual coherence of
the generated imagery, in particular to create realistic illuminations
and occlusions [31]. Since shadows are purposefully not removed
in the presented pipeline, virtual objects “reuse” the shadow cast by
the original objects, thus alleviating part of the illumination prob-
lem [2]. However, as seen in Figure 12b), occlusions are not detected
in TransforMR. Instead, heavily occluded objects are likely to not
be detected by the 3D detection models, thus leaving the object
untransformed. Adding light source estimation for more realistic

c   Tracking Failure

a   Pose Failure b   Occlusion Failure

Figure 12: Perceptually challenging situations can cause visually
incoherent transformed scenes. (a) Intricate poses in humans, e.g.,
of cyclists, can cause incoherent renderings of the virtual avatars.
(b) Heavily occluded objects are likely to not be detected, thus yield-
ing scenes that are mostly coherent with the depth in the scene.
However, slightly occluded real objects might be detected anyways,
leading to renderings of virtual objects that are negligent of occlu-
sions. (c) Objects that move considerably across a couple of frames,
possibly even hidden behind other objects, can cause a discontinua-
tion in the instance tracking chain.

illumination and in particular adding a depth map estimation for
occlusion shading [56] could improve the geometric plausibility of
transformed scenes.

Targeting Head-Mounted Displays. We have designed Trans-
forMR as a mobile AR system so to ensure that users can always
keep track of correspondences between virtual and real objects.
However, future work might explore the opportunities to employ
the pipeline for use in head-mounted displays (HMD). While we
hypothesize that such an approach might be beneficial in terms of
full immersiveness, it remains an open research question how to
minimize latency of such a system generally, and inference latency
of all the deep-learning models specifically, so that the higher frame
rate demand required for safe and smooth HMD experiences can be
met.

Estimating World Coordinates. TransforMR’s perception pipeline
only estimates the location and pose of objects with respect to the
camera, but does not track their location in world coordinates. There-
fore, the system does not differentiate between ego motion and object
motion. Using SLAM approaches [41], either visually or by means
of the devices inertial sensors, could help the system to estimate
world-relative object movement. This would allow movement-aware
substitutions, e. g. with virtual horses that either stand, walk, trot, or
career, depending on the velocity of the real object.

Enriching Themes and Narratives. TransforMR has been im-
plemented with support for detecting and estimating the 3D pose
of vehicles and humans. Adding pose estimation for other indoor
or outdoor object classes such as animals, trees, chairs, etc. will
enable richer experiences. Furthermore, we see a potential for com-
plementing pose-aware object substitution with pose-aware plane
substitutions, e.g., to transform streets into water, lava, or lunar
soil. Furthermore, we see a high potential for increasing immersive-
ness through Audio AR features that emphasize narratives for the
consumptive usage of TransforMR.

7 CONCLUSION

In this paper, we have presented TransforMR, a system that performs
pose-aware object substitutions to create meaningful alternate mixed
reality scenes. Designed under the objectives of environment inde-
pendence, correspondence traceability, mobile device compatibility,
and real-time execution, we proposed a cloud-assisted architecture



comprising computer-vision models for 2D instance segmentation,
3D pose estimation for vehicles, 3D pose estimation for humans,
speed or quality-optimized alternatives for object removal through
inpainting, as well as comprising a semantic mapping procedure and
the 3D rendering.

In a preliminary user evaluation, we found that users particularly
like to employ TransforMR for real-time character animation, rem-
iniscent of motion capturing in professional filmmaking, however
operating without preparation of either the scene or the actor.

While gaming-oriented Mixed Reality applications of today
mainly borrow 3D geometry from the real world and register objects
based on planes and visual features, TransforMR heads towards
mixed reality experiences that do not only incorporate geometrical
but also semantical information from the real-scene context into the
composition of the mixed-in virtual scene. In the future, we expect
to see more research that explores concepts to realize semantics-
driven mixed reality, complementary to or derived from this work
on reusing semantical object embeddings.

One major hurdle in realizing semantics-driven mixed reality
scenes lies in the computational demand. More specifically, to
extract possibly multiple layers of semantics from camera input
using demanding neural networks, a single, mobile-device GPU can
present an insurmountable bottleneck. In TransforMR, we show-
cased the integration of four neural networks without being subject
to mobile resource limitations. We believe that future research can
draw on the feasibility of such a cloud mixed reality approach. To
enable the community to reproduce the system and to build on
our work, we make all of our source code and assets available on
GitHub.
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